Metamath Proof Explorer


Theorem infmo

Description: Any class B has at most one infimum in A (where R is interpreted as 'less than'). (Contributed by AV, 6-Oct-2020)

Ref Expression
Hypothesis infmo.1 φROrA
Assertion infmo φ*xAyB¬yRxyAxRyzBzRy

Proof

Step Hyp Ref Expression
1 infmo.1 φROrA
2 ancom yB¬yRxyB¬yRwyB¬yRwyB¬yRx
3 2 anbi2ci yB¬yRxyB¬yRwyAwRyzBzRyyAxRyzBzRyyAwRyzBzRyyAxRyzBzRyyB¬yRwyB¬yRx
4 an42 yB¬yRxyAxRyzBzRyyB¬yRwyAwRyzBzRyyB¬yRxyB¬yRwyAwRyzBzRyyAxRyzBzRy
5 an42 yAwRyzBzRyyB¬yRxyAxRyzBzRyyB¬yRwyAwRyzBzRyyAxRyzBzRyyB¬yRwyB¬yRx
6 3 4 5 3bitr4i yB¬yRxyAxRyzBzRyyB¬yRwyAwRyzBzRyyAwRyzBzRyyB¬yRxyAxRyzBzRyyB¬yRw
7 ralnex yB¬yRx¬yByRx
8 breq2 y=xwRywRx
9 breq2 y=xzRyzRx
10 9 rexbidv y=xzBzRyzBzRx
11 8 10 imbi12d y=xwRyzBzRywRxzBzRx
12 11 rspcva xAyAwRyzBzRywRxzBzRx
13 breq1 y=zyRxzRx
14 13 cbvrexvw yByRxzBzRx
15 12 14 syl6ibr xAyAwRyzBzRywRxyByRx
16 15 con3d xAyAwRyzBzRy¬yByRx¬wRx
17 7 16 biimtrid xAyAwRyzBzRyyB¬yRx¬wRx
18 17 expimpd xAyAwRyzBzRyyB¬yRx¬wRx
19 18 ad2antrl ROrAxAwAyAwRyzBzRyyB¬yRx¬wRx
20 ralnex yB¬yRw¬yByRw
21 breq2 y=wxRyxRw
22 breq2 y=wzRyzRw
23 22 rexbidv y=wzBzRyzBzRw
24 21 23 imbi12d y=wxRyzBzRyxRwzBzRw
25 24 rspcva wAyAxRyzBzRyxRwzBzRw
26 breq1 y=zyRwzRw
27 26 cbvrexvw yByRwzBzRw
28 25 27 syl6ibr wAyAxRyzBzRyxRwyByRw
29 28 con3d wAyAxRyzBzRy¬yByRw¬xRw
30 20 29 biimtrid wAyAxRyzBzRyyB¬yRw¬xRw
31 30 expimpd wAyAxRyzBzRyyB¬yRw¬xRw
32 31 ad2antll ROrAxAwAyAxRyzBzRyyB¬yRw¬xRw
33 19 32 anim12d ROrAxAwAyAwRyzBzRyyB¬yRxyAxRyzBzRyyB¬yRw¬wRx¬xRw
34 33 imp ROrAxAwAyAwRyzBzRyyB¬yRxyAxRyzBzRyyB¬yRw¬wRx¬xRw
35 34 ancomd ROrAxAwAyAwRyzBzRyyB¬yRxyAxRyzBzRyyB¬yRw¬xRw¬wRx
36 35 ex ROrAxAwAyAwRyzBzRyyB¬yRxyAxRyzBzRyyB¬yRw¬xRw¬wRx
37 6 36 biimtrid ROrAxAwAyB¬yRxyAxRyzBzRyyB¬yRwyAwRyzBzRy¬xRw¬wRx
38 sotrieq2 ROrAxAwAx=w¬xRw¬wRx
39 37 38 sylibrd ROrAxAwAyB¬yRxyAxRyzBzRyyB¬yRwyAwRyzBzRyx=w
40 39 ralrimivva ROrAxAwAyB¬yRxyAxRyzBzRyyB¬yRwyAwRyzBzRyx=w
41 1 40 syl φxAwAyB¬yRxyAxRyzBzRyyB¬yRwyAwRyzBzRyx=w
42 breq2 x=wyRxyRw
43 42 notbid x=w¬yRx¬yRw
44 43 ralbidv x=wyB¬yRxyB¬yRw
45 breq1 x=wxRywRy
46 45 imbi1d x=wxRyzBzRywRyzBzRy
47 46 ralbidv x=wyAxRyzBzRyyAwRyzBzRy
48 44 47 anbi12d x=wyB¬yRxyAxRyzBzRyyB¬yRwyAwRyzBzRy
49 48 rmo4 *xAyB¬yRxyAxRyzBzRyxAwAyB¬yRxyAxRyzBzRyyB¬yRwyAwRyzBzRyx=w
50 41 49 sylibr φ*xAyB¬yRxyAxRyzBzRy