| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submrcl |  | 
						
							| 2 |  | ssinss1 |  | 
						
							| 3 | 2 | 3ad2ant1 |  | 
						
							| 4 | 3 | ad2antrl |  | 
						
							| 5 |  | elin |  | 
						
							| 6 | 5 | simplbi2com |  | 
						
							| 7 | 6 | 3ad2ant2 |  | 
						
							| 8 | 7 | com12 |  | 
						
							| 9 | 8 | 3ad2ant2 |  | 
						
							| 10 | 9 | imp |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 |  | elin |  | 
						
							| 13 |  | elin |  | 
						
							| 14 | 12 13 | anbi12i |  | 
						
							| 15 |  | oveq1 |  | 
						
							| 16 | 15 | eleq1d |  | 
						
							| 17 |  | oveq2 |  | 
						
							| 18 | 17 | eleq1d |  | 
						
							| 19 |  | simpl |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 |  | eqidd |  | 
						
							| 22 |  | simpl |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 | 16 18 20 21 23 | rspc2vd |  | 
						
							| 25 | 24 | com12 |  | 
						
							| 26 | 25 | 3ad2ant3 |  | 
						
							| 27 | 26 | ad2antrl |  | 
						
							| 28 | 27 | imp |  | 
						
							| 29 | 15 | eleq1d |  | 
						
							| 30 | 17 | eleq1d |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 |  | eqidd |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 | 29 30 32 33 35 | rspc2vd |  | 
						
							| 37 | 36 | com12 |  | 
						
							| 38 | 37 | 3ad2ant3 |  | 
						
							| 39 | 38 | adantl |  | 
						
							| 40 | 39 | adantl |  | 
						
							| 41 | 40 | imp |  | 
						
							| 42 | 28 41 | elind |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 14 43 | biimtrid |  | 
						
							| 45 | 44 | ralrimivv |  | 
						
							| 46 | 4 11 45 | 3jca |  | 
						
							| 47 | 46 | ex |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 48 49 50 | issubm |  | 
						
							| 52 | 48 49 50 | issubm |  | 
						
							| 53 | 51 52 | anbi12d |  | 
						
							| 54 | 48 49 50 | issubm |  | 
						
							| 55 | 47 53 54 | 3imtr4d |  | 
						
							| 56 | 55 | expd |  | 
						
							| 57 | 1 56 | mpcom |  | 
						
							| 58 | 57 | imp |  |