Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 . (Contributed by NM, 16-Aug-2008)
Ref | Expression | ||
---|---|---|---|
Hypotheses | intfracq.1 | |
|
intfracq.2 | |
||
Assertion | intfracq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intfracq.1 | |
|
2 | intfracq.2 | |
|
3 | zre | |
|
4 | 3 | adantr | |
5 | nnre | |
|
6 | 5 | adantl | |
7 | nnne0 | |
|
8 | 7 | adantl | |
9 | 4 6 8 | redivcld | |
10 | 1 2 | intfrac2 | |
11 | 9 10 | syl | |
12 | 11 | simp1d | |
13 | fraclt1 | |
|
14 | 9 13 | syl | |
15 | 1 | oveq2i | |
16 | 2 15 | eqtri | |
17 | 16 | a1i | |
18 | nncn | |
|
19 | 18 7 | dividd | |
20 | 19 | adantl | |
21 | 14 17 20 | 3brtr4d | |
22 | reflcl | |
|
23 | 9 22 | syl | |
24 | 1 23 | eqeltrid | |
25 | 9 24 | resubcld | |
26 | 2 25 | eqeltrid | |
27 | nngt0 | |
|
28 | 5 27 | jca | |
29 | 28 | adantl | |
30 | ltmuldiv2 | |
|
31 | 26 6 29 30 | syl3anc | |
32 | 21 31 | mpbird | |
33 | 2 | oveq2i | |
34 | 18 | adantl | |
35 | 9 | recnd | |
36 | 9 | flcld | |
37 | 1 36 | eqeltrid | |
38 | 37 | zcnd | |
39 | 34 35 38 | subdid | |
40 | 33 39 | eqtrid | |
41 | zcn | |
|
42 | 41 | adantr | |
43 | 42 34 8 | divcan2d | |
44 | simpl | |
|
45 | 43 44 | eqeltrd | |
46 | nnz | |
|
47 | 46 | adantl | |
48 | 47 37 | zmulcld | |
49 | 45 48 | zsubcld | |
50 | 40 49 | eqeltrd | |
51 | zltlem1 | |
|
52 | 50 47 51 | syl2anc | |
53 | 32 52 | mpbid | |
54 | peano2rem | |
|
55 | 5 54 | syl | |
56 | 55 | adantl | |
57 | lemuldiv2 | |
|
58 | 26 56 29 57 | syl3anc | |
59 | 53 58 | mpbid | |
60 | 11 | simp3d | |
61 | 12 59 60 | 3jca | |