Metamath Proof Explorer


Theorem intfracq

Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 . (Contributed by NM, 16-Aug-2008)

Ref Expression
Hypotheses intfracq.1 Z=MN
intfracq.2 F=MNZ
Assertion intfracq MN0FFN1NMN=Z+F

Proof

Step Hyp Ref Expression
1 intfracq.1 Z=MN
2 intfracq.2 F=MNZ
3 zre MM
4 3 adantr MNM
5 nnre NN
6 5 adantl MNN
7 nnne0 NN0
8 7 adantl MNN0
9 4 6 8 redivcld MNMN
10 1 2 intfrac2 MN0FF<1MN=Z+F
11 9 10 syl MN0FF<1MN=Z+F
12 11 simp1d MN0F
13 fraclt1 MNMNMN<1
14 9 13 syl MNMNMN<1
15 1 oveq2i MNZ=MNMN
16 2 15 eqtri F=MNMN
17 16 a1i MNF=MNMN
18 nncn NN
19 18 7 dividd NNN=1
20 19 adantl MNNN=1
21 14 17 20 3brtr4d MNF<NN
22 reflcl MNMN
23 9 22 syl MNMN
24 1 23 eqeltrid MNZ
25 9 24 resubcld MNMNZ
26 2 25 eqeltrid MNF
27 nngt0 N0<N
28 5 27 jca NN0<N
29 28 adantl MNN0<N
30 ltmuldiv2 FNN0<NNF<NF<NN
31 26 6 29 30 syl3anc MNNF<NF<NN
32 21 31 mpbird MNNF<N
33 2 oveq2i NF=NMNZ
34 18 adantl MNN
35 9 recnd MNMN
36 9 flcld MNMN
37 1 36 eqeltrid MNZ
38 37 zcnd MNZ
39 34 35 38 subdid MNNMNZ=NMNNZ
40 33 39 eqtrid MNNF=NMNNZ
41 zcn MM
42 41 adantr MNM
43 42 34 8 divcan2d MNNMN=M
44 simpl MNM
45 43 44 eqeltrd MNNMN
46 nnz NN
47 46 adantl MNN
48 47 37 zmulcld MNNZ
49 45 48 zsubcld MNNMNNZ
50 40 49 eqeltrd MNNF
51 zltlem1 NFNNF<NNFN1
52 50 47 51 syl2anc MNNF<NNFN1
53 32 52 mpbid MNNFN1
54 peano2rem NN1
55 5 54 syl NN1
56 55 adantl MNN1
57 lemuldiv2 FN1N0<NNFN1FN1N
58 26 56 29 57 syl3anc MNNFN1FN1N
59 53 58 mpbid MNFN1N
60 11 simp3d MNMN=Z+F
61 12 59 60 3jca MN0FFN1NMN=Z+F