| Step | Hyp | Ref | Expression | 
						
							| 1 |  | intfracq.1 |  | 
						
							| 2 |  | intfracq.2 |  | 
						
							| 3 |  | zre |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 |  | nnre |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | nnne0 |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 | 4 6 8 | redivcld |  | 
						
							| 10 | 1 2 | intfrac2 |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 | 11 | simp1d |  | 
						
							| 13 |  | fraclt1 |  | 
						
							| 14 | 9 13 | syl |  | 
						
							| 15 | 1 | oveq2i |  | 
						
							| 16 | 2 15 | eqtri |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 |  | nncn |  | 
						
							| 19 | 18 7 | dividd |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 14 17 20 | 3brtr4d |  | 
						
							| 22 |  | reflcl |  | 
						
							| 23 | 9 22 | syl |  | 
						
							| 24 | 1 23 | eqeltrid |  | 
						
							| 25 | 9 24 | resubcld |  | 
						
							| 26 | 2 25 | eqeltrid |  | 
						
							| 27 |  | nngt0 |  | 
						
							| 28 | 5 27 | jca |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 |  | ltmuldiv2 |  | 
						
							| 31 | 26 6 29 30 | syl3anc |  | 
						
							| 32 | 21 31 | mpbird |  | 
						
							| 33 | 2 | oveq2i |  | 
						
							| 34 | 18 | adantl |  | 
						
							| 35 | 9 | recnd |  | 
						
							| 36 | 9 | flcld |  | 
						
							| 37 | 1 36 | eqeltrid |  | 
						
							| 38 | 37 | zcnd |  | 
						
							| 39 | 34 35 38 | subdid |  | 
						
							| 40 | 33 39 | eqtrid |  | 
						
							| 41 |  | zcn |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 | 42 34 8 | divcan2d |  | 
						
							| 44 |  | simpl |  | 
						
							| 45 | 43 44 | eqeltrd |  | 
						
							| 46 |  | nnz |  | 
						
							| 47 | 46 | adantl |  | 
						
							| 48 | 47 37 | zmulcld |  | 
						
							| 49 | 45 48 | zsubcld |  | 
						
							| 50 | 40 49 | eqeltrd |  | 
						
							| 51 |  | zltlem1 |  | 
						
							| 52 | 50 47 51 | syl2anc |  | 
						
							| 53 | 32 52 | mpbid |  | 
						
							| 54 |  | peano2rem |  | 
						
							| 55 | 5 54 | syl |  | 
						
							| 56 | 55 | adantl |  | 
						
							| 57 |  | lemuldiv2 |  | 
						
							| 58 | 26 56 29 57 | syl3anc |  | 
						
							| 59 | 53 58 | mpbid |  | 
						
							| 60 | 11 | simp3d |  | 
						
							| 61 | 12 59 60 | 3jca |  |