Description: Lemma for ipassi . Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ip1i.1 | |
|
ip1i.2 | |
||
ip1i.4 | |
||
ip1i.7 | |
||
ip1i.9 | |
||
ipasslem1.b | |
||
Assertion | ipasslem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.1 | |
|
2 | ip1i.2 | |
|
3 | ip1i.4 | |
|
4 | ip1i.7 | |
|
5 | ip1i.9 | |
|
6 | ipasslem1.b | |
|
7 | elq | |
|
8 | zcn | |
|
9 | nnrecre | |
|
10 | 9 | recnd | |
11 | 5 | phnvi | |
12 | 1 4 | dipcl | |
13 | 11 6 12 | mp3an13 | |
14 | mulass | |
|
15 | 8 10 13 14 | syl3an | |
16 | 8 | adantr | |
17 | nncn | |
|
18 | 17 | adantl | |
19 | nnne0 | |
|
20 | 19 | adantl | |
21 | 16 18 20 | divrecd | |
22 | 21 | 3adant3 | |
23 | 22 | oveq1d | |
24 | 22 | oveq1d | |
25 | id | |
|
26 | 1 3 | nvsass | |
27 | 11 26 | mpan | |
28 | 8 10 25 27 | syl3an | |
29 | 24 28 | eqtrd | |
30 | 29 | oveq1d | |
31 | 1 3 | nvscl | |
32 | 11 31 | mp3an1 | |
33 | 10 32 | sylan | |
34 | 1 2 3 4 5 6 | ipasslem3 | |
35 | 33 34 | sylan2 | |
36 | 35 | 3impb | |
37 | 1 2 3 4 5 6 | ipasslem4 | |
38 | 37 | 3adant1 | |
39 | 38 | oveq2d | |
40 | 30 36 39 | 3eqtrd | |
41 | 15 23 40 | 3eqtr4rd | |
42 | oveq1 | |
|
43 | 42 | oveq1d | |
44 | oveq1 | |
|
45 | 43 44 | eqeq12d | |
46 | 41 45 | syl5ibrcom | |
47 | 46 | 3expia | |
48 | 47 | com23 | |
49 | 48 | rexlimivv | |
50 | 7 49 | sylbi | |
51 | 50 | imp | |