Metamath Proof Explorer


Theorem ipasslem5

Description: Lemma for ipassi . Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ipasslem1.b BX
Assertion ipasslem5 CAXCSAPB=CAPB

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ipasslem1.b BX
7 elq CjkC=jk
8 zcn jj
9 nnrecre k1k
10 9 recnd k1k
11 5 phnvi UNrmCVec
12 1 4 dipcl UNrmCVecAXBXAPB
13 11 6 12 mp3an13 AXAPB
14 mulass j1kAPBj1kAPB=j1kAPB
15 8 10 13 14 syl3an jkAXj1kAPB=j1kAPB
16 8 adantr jkj
17 nncn kk
18 17 adantl jkk
19 nnne0 kk0
20 19 adantl jkk0
21 16 18 20 divrecd jkjk=j1k
22 21 3adant3 jkAXjk=j1k
23 22 oveq1d jkAXjkAPB=j1kAPB
24 22 oveq1d jkAXjkSA=j1kSA
25 id AXAX
26 1 3 nvsass UNrmCVecj1kAXj1kSA=jS1kSA
27 11 26 mpan j1kAXj1kSA=jS1kSA
28 8 10 25 27 syl3an jkAXj1kSA=jS1kSA
29 24 28 eqtrd jkAXjkSA=jS1kSA
30 29 oveq1d jkAXjkSAPB=jS1kSAPB
31 1 3 nvscl UNrmCVec1kAX1kSAX
32 11 31 mp3an1 1kAX1kSAX
33 10 32 sylan kAX1kSAX
34 1 2 3 4 5 6 ipasslem3 j1kSAXjS1kSAPB=j1kSAPB
35 33 34 sylan2 jkAXjS1kSAPB=j1kSAPB
36 35 3impb jkAXjS1kSAPB=j1kSAPB
37 1 2 3 4 5 6 ipasslem4 kAX1kSAPB=1kAPB
38 37 3adant1 jkAX1kSAPB=1kAPB
39 38 oveq2d jkAXj1kSAPB=j1kAPB
40 30 36 39 3eqtrd jkAXjkSAPB=j1kAPB
41 15 23 40 3eqtr4rd jkAXjkSAPB=jkAPB
42 oveq1 C=jkCSA=jkSA
43 42 oveq1d C=jkCSAPB=jkSAPB
44 oveq1 C=jkCAPB=jkAPB
45 43 44 eqeq12d C=jkCSAPB=CAPBjkSAPB=jkAPB
46 41 45 syl5ibrcom jkAXC=jkCSAPB=CAPB
47 46 3expia jkAXC=jkCSAPB=CAPB
48 47 com23 jkC=jkAXCSAPB=CAPB
49 48 rexlimivv jkC=jkAXCSAPB=CAPB
50 7 49 sylbi CAXCSAPB=CAPB
51 50 imp CAXCSAPB=CAPB