Metamath Proof Explorer


Theorem isclo

Description: A set A is clopen iff for every point x in the space there is a neighborhood y such that all the points in y are in A iff x is. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypothesis isclo.1 X=J
Assertion isclo JTopAXAJClsdJxXyJxyzyxAzA

Proof

Step Hyp Ref Expression
1 isclo.1 X=J
2 elin AJClsdJAJAClsdJ
3 1 iscld2 JTopAXAClsdJXAJ
4 3 anbi2d JTopAXAJAClsdJAJXAJ
5 eltop2 JTopAJxAyJxyyA
6 dfss3 yAzyzA
7 pm5.501 xAzAxAzA
8 7 ralbidv xAzyzAzyxAzA
9 6 8 bitrid xAyAzyxAzA
10 9 anbi2d xAxyyAxyzyxAzA
11 10 rexbidv xAyJxyyAyJxyzyxAzA
12 11 ralbiia xAyJxyyAxAyJxyzyxAzA
13 5 12 bitrdi JTopAJxAyJxyzyxAzA
14 eltop2 JTopXAJxXAyJxyyXA
15 dfss3 yXAzyzXA
16 id zyzy
17 simpr xXAyJyJ
18 elunii zyyJzJ
19 16 17 18 syl2anr xXAyJzyzJ
20 19 1 eleqtrrdi xXAyJzyzX
21 eldif zXAzX¬zA
22 21 baib zXzXA¬zA
23 20 22 syl xXAyJzyzXA¬zA
24 eldifn xXA¬xA
25 nbn2 ¬xA¬zAxAzA
26 24 25 syl xXA¬zAxAzA
27 26 ad2antrr xXAyJzy¬zAxAzA
28 23 27 bitrd xXAyJzyzXAxAzA
29 28 ralbidva xXAyJzyzXAzyxAzA
30 15 29 bitrid xXAyJyXAzyxAzA
31 30 anbi2d xXAyJxyyXAxyzyxAzA
32 31 rexbidva xXAyJxyyXAyJxyzyxAzA
33 32 ralbiia xXAyJxyyXAxXAyJxyzyxAzA
34 14 33 bitrdi JTopXAJxXAyJxyzyxAzA
35 13 34 anbi12d JTopAJXAJxAyJxyzyxAzAxXAyJxyzyxAzA
36 35 adantr JTopAXAJXAJxAyJxyzyxAzAxXAyJxyzyxAzA
37 ralunb xAXAyJxyzyxAzAxAyJxyzyxAzAxXAyJxyzyxAzA
38 simpr JTopAXAX
39 undif AXAXA=X
40 38 39 sylib JTopAXAXA=X
41 40 raleqdv JTopAXxAXAyJxyzyxAzAxXyJxyzyxAzA
42 37 41 bitr3id JTopAXxAyJxyzyxAzAxXAyJxyzyxAzAxXyJxyzyxAzA
43 4 36 42 3bitrd JTopAXAJAClsdJxXyJxyzyxAzA
44 2 43 bitrid JTopAXAJClsdJxXyJxyzyxAzA