Description: A set A is clopen iff for every point x in the space there is a neighborhood y such that all the points in y are in A iff x is. (Contributed by Mario Carneiro, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isclo.1 | |
|
Assertion | isclo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclo.1 | |
|
2 | elin | |
|
3 | 1 | iscld2 | |
4 | 3 | anbi2d | |
5 | eltop2 | |
|
6 | dfss3 | |
|
7 | pm5.501 | |
|
8 | 7 | ralbidv | |
9 | 6 8 | bitrid | |
10 | 9 | anbi2d | |
11 | 10 | rexbidv | |
12 | 11 | ralbiia | |
13 | 5 12 | bitrdi | |
14 | eltop2 | |
|
15 | dfss3 | |
|
16 | id | |
|
17 | simpr | |
|
18 | elunii | |
|
19 | 16 17 18 | syl2anr | |
20 | 19 1 | eleqtrrdi | |
21 | eldif | |
|
22 | 21 | baib | |
23 | 20 22 | syl | |
24 | eldifn | |
|
25 | nbn2 | |
|
26 | 24 25 | syl | |
27 | 26 | ad2antrr | |
28 | 23 27 | bitrd | |
29 | 28 | ralbidva | |
30 | 15 29 | bitrid | |
31 | 30 | anbi2d | |
32 | 31 | rexbidva | |
33 | 32 | ralbiia | |
34 | 14 33 | bitrdi | |
35 | 13 34 | anbi12d | |
36 | 35 | adantr | |
37 | ralunb | |
|
38 | simpr | |
|
39 | undif | |
|
40 | 38 39 | sylib | |
41 | 40 | raleqdv | |
42 | 37 41 | bitr3id | |
43 | 4 36 42 | 3bitrd | |
44 | 2 43 | bitrid | |