Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element x should have a right-inverse I ( x ) . See isdrngd for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013) Remove hypothesis. (Revised by SN, 19-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isdrngd.b | |
|
isdrngd.t | |
||
isdrngd.z | |
||
isdrngd.u | |
||
isdrngd.r | |
||
isdrngd.n | |
||
isdrngd.o | |
||
isdrngd.i | |
||
isdrngrd.k | |
||
Assertion | isdrngrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrngd.b | |
|
2 | isdrngd.t | |
|
3 | isdrngd.z | |
|
4 | isdrngd.u | |
|
5 | isdrngd.r | |
|
6 | isdrngd.n | |
|
7 | isdrngd.o | |
|
8 | isdrngd.i | |
|
9 | isdrngrd.k | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 10 11 | opprbas | |
13 | 1 12 | eqtrdi | |
14 | eqidd | |
|
15 | eqid | |
|
16 | 10 15 | oppr0 | |
17 | 3 16 | eqtrdi | |
18 | eqid | |
|
19 | 10 18 | oppr1 | |
20 | 4 19 | eqtrdi | |
21 | 10 | opprring | |
22 | 5 21 | syl | |
23 | eleq1w | |
|
24 | neeq1 | |
|
25 | 23 24 | anbi12d | |
26 | 25 | 3anbi2d | |
27 | oveq1 | |
|
28 | 27 | neeq1d | |
29 | 26 28 | imbi12d | |
30 | eleq1w | |
|
31 | neeq1 | |
|
32 | 30 31 | anbi12d | |
33 | 32 | 3anbi3d | |
34 | oveq2 | |
|
35 | 34 | neeq1d | |
36 | 33 35 | imbi12d | |
37 | 2 | 3ad2ant1 | |
38 | 37 | oveqd | |
39 | eqid | |
|
40 | eqid | |
|
41 | 11 39 10 40 | opprmul | |
42 | 38 41 | eqtr4di | |
43 | 42 6 | eqnetrrd | |
44 | 43 | 3com23 | |
45 | 36 44 | chvarvv | |
46 | 29 45 | chvarvv | |
47 | 11 39 10 40 | opprmul | |
48 | 2 | adantr | |
49 | 48 | oveqd | |
50 | 49 9 | eqtr3d | |
51 | 47 50 | eqtrid | |
52 | 13 14 17 20 22 46 7 8 51 | isdrngd | |
53 | 10 | opprdrng | |
54 | 52 53 | sylibr | |