Metamath Proof Explorer


Theorem isdrngrd

Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element x should have a right-inverse I ( x ) . See isdrngd for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013) Remove hypothesis. (Revised by SN, 19-Feb-2025)

Ref Expression
Hypotheses isdrngd.b φB=BaseR
isdrngd.t φ·˙=R
isdrngd.z φ0˙=0R
isdrngd.u φ1˙=1R
isdrngd.r φRRing
isdrngd.n φxBx0˙yBy0˙x·˙y0˙
isdrngd.o φ1˙0˙
isdrngd.i φxBx0˙IB
isdrngrd.k φxBx0˙x·˙I=1˙
Assertion isdrngrd φRDivRing

Proof

Step Hyp Ref Expression
1 isdrngd.b φB=BaseR
2 isdrngd.t φ·˙=R
3 isdrngd.z φ0˙=0R
4 isdrngd.u φ1˙=1R
5 isdrngd.r φRRing
6 isdrngd.n φxBx0˙yBy0˙x·˙y0˙
7 isdrngd.o φ1˙0˙
8 isdrngd.i φxBx0˙IB
9 isdrngrd.k φxBx0˙x·˙I=1˙
10 eqid opprR=opprR
11 eqid BaseR=BaseR
12 10 11 opprbas BaseR=BaseopprR
13 1 12 eqtrdi φB=BaseopprR
14 eqidd φopprR=opprR
15 eqid 0R=0R
16 10 15 oppr0 0R=0opprR
17 3 16 eqtrdi φ0˙=0opprR
18 eqid 1R=1R
19 10 18 oppr1 1R=1opprR
20 4 19 eqtrdi φ1˙=1opprR
21 10 opprring RRingopprRRing
22 5 21 syl φopprRRing
23 eleq1w y=xyBxB
24 neeq1 y=xy0˙x0˙
25 23 24 anbi12d y=xyBy0˙xBx0˙
26 25 3anbi2d y=xφyBy0˙zBz0˙φxBx0˙zBz0˙
27 oveq1 y=xyopprRz=xopprRz
28 27 neeq1d y=xyopprRz0˙xopprRz0˙
29 26 28 imbi12d y=xφyBy0˙zBz0˙yopprRz0˙φxBx0˙zBz0˙xopprRz0˙
30 eleq1w x=zxBzB
31 neeq1 x=zx0˙z0˙
32 30 31 anbi12d x=zxBx0˙zBz0˙
33 32 3anbi3d x=zφyBy0˙xBx0˙φyBy0˙zBz0˙
34 oveq2 x=zyopprRx=yopprRz
35 34 neeq1d x=zyopprRx0˙yopprRz0˙
36 33 35 imbi12d x=zφyBy0˙xBx0˙yopprRx0˙φyBy0˙zBz0˙yopprRz0˙
37 2 3ad2ant1 φxBx0˙yBy0˙·˙=R
38 37 oveqd φxBx0˙yBy0˙x·˙y=xRy
39 eqid R=R
40 eqid opprR=opprR
41 11 39 10 40 opprmul yopprRx=xRy
42 38 41 eqtr4di φxBx0˙yBy0˙x·˙y=yopprRx
43 42 6 eqnetrrd φxBx0˙yBy0˙yopprRx0˙
44 43 3com23 φyBy0˙xBx0˙yopprRx0˙
45 36 44 chvarvv φyBy0˙zBz0˙yopprRz0˙
46 29 45 chvarvv φxBx0˙zBz0˙xopprRz0˙
47 11 39 10 40 opprmul IopprRx=xRI
48 2 adantr φxBx0˙·˙=R
49 48 oveqd φxBx0˙x·˙I=xRI
50 49 9 eqtr3d φxBx0˙xRI=1˙
51 47 50 eqtrid φxBx0˙IopprRx=1˙
52 13 14 17 20 22 46 7 8 51 isdrngd φopprRDivRing
53 10 opprdrng RDivRingopprRDivRing
54 52 53 sylibr φRDivRing