Metamath Proof Explorer


Theorem isdrngrdOLD

Description: Obsolete version of isdrngrd as of 19-Feb-2025. (Contributed by NM, 10-Aug-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses isdrngdOLD.b φB=BaseR
isdrngdOLD.t φ·˙=R
isdrngdOLD.z φ0˙=0R
isdrngdOLD.u φ1˙=1R
isdrngdOLD.r φRRing
isdrngdOLD.n φxBx0˙yBy0˙x·˙y0˙
isdrngdOLD.o φ1˙0˙
isdrngdOLD.i φxBx0˙IB
isdrngdOLD.j φxBx0˙I0˙
isdrngrdOLD.k φxBx0˙x·˙I=1˙
Assertion isdrngrdOLD φRDivRing

Proof

Step Hyp Ref Expression
1 isdrngdOLD.b φB=BaseR
2 isdrngdOLD.t φ·˙=R
3 isdrngdOLD.z φ0˙=0R
4 isdrngdOLD.u φ1˙=1R
5 isdrngdOLD.r φRRing
6 isdrngdOLD.n φxBx0˙yBy0˙x·˙y0˙
7 isdrngdOLD.o φ1˙0˙
8 isdrngdOLD.i φxBx0˙IB
9 isdrngdOLD.j φxBx0˙I0˙
10 isdrngrdOLD.k φxBx0˙x·˙I=1˙
11 eqid opprR=opprR
12 eqid BaseR=BaseR
13 11 12 opprbas BaseR=BaseopprR
14 1 13 eqtrdi φB=BaseopprR
15 eqidd φopprR=opprR
16 eqid 0R=0R
17 11 16 oppr0 0R=0opprR
18 3 17 eqtrdi φ0˙=0opprR
19 eqid 1R=1R
20 11 19 oppr1 1R=1opprR
21 4 20 eqtrdi φ1˙=1opprR
22 11 opprring RRingopprRRing
23 5 22 syl φopprRRing
24 eleq1w y=xyBxB
25 neeq1 y=xy0˙x0˙
26 24 25 anbi12d y=xyBy0˙xBx0˙
27 26 3anbi2d y=xφyBy0˙zBz0˙φxBx0˙zBz0˙
28 oveq1 y=xyopprRz=xopprRz
29 28 neeq1d y=xyopprRz0˙xopprRz0˙
30 27 29 imbi12d y=xφyBy0˙zBz0˙yopprRz0˙φxBx0˙zBz0˙xopprRz0˙
31 eleq1w x=zxBzB
32 neeq1 x=zx0˙z0˙
33 31 32 anbi12d x=zxBx0˙zBz0˙
34 33 3anbi3d x=zφyBy0˙xBx0˙φyBy0˙zBz0˙
35 oveq2 x=zyopprRx=yopprRz
36 35 neeq1d x=zyopprRx0˙yopprRz0˙
37 34 36 imbi12d x=zφyBy0˙xBx0˙yopprRx0˙φyBy0˙zBz0˙yopprRz0˙
38 2 3ad2ant1 φxBx0˙yBy0˙·˙=R
39 38 oveqd φxBx0˙yBy0˙x·˙y=xRy
40 eqid R=R
41 eqid opprR=opprR
42 12 40 11 41 opprmul yopprRx=xRy
43 39 42 eqtr4di φxBx0˙yBy0˙x·˙y=yopprRx
44 43 6 eqnetrrd φxBx0˙yBy0˙yopprRx0˙
45 44 3com23 φyBy0˙xBx0˙yopprRx0˙
46 37 45 chvarvv φyBy0˙zBz0˙yopprRz0˙
47 30 46 chvarvv φxBx0˙zBz0˙xopprRz0˙
48 12 40 11 41 opprmul IopprRx=xRI
49 2 adantr φxBx0˙·˙=R
50 49 oveqd φxBx0˙x·˙I=xRI
51 50 10 eqtr3d φxBx0˙xRI=1˙
52 48 51 eqtrid φxBx0˙IopprRx=1˙
53 14 15 18 21 23 47 7 8 9 52 isdrngdOLD φopprRDivRing
54 11 opprdrng RDivRingopprRDivRing
55 53 54 sylibr φRDivRing