Metamath Proof Explorer


Theorem iseraltlem1

Description: Lemma for iseralt . A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses iseralt.1 Z=M
iseralt.2 φM
iseralt.3 φG:Z
iseralt.4 φkZGk+1Gk
iseralt.5 φG0
Assertion iseraltlem1 φNZ0GN

Proof

Step Hyp Ref Expression
1 iseralt.1 Z=M
2 iseralt.2 φM
3 iseralt.3 φG:Z
4 iseralt.4 φkZGk+1Gk
5 iseralt.5 φG0
6 eqid N=N
7 eluzelz NMN
8 7 1 eleq2s NZN
9 8 adantl φNZN
10 5 adantr φNZG0
11 3 ffvelcdmda φNZGN
12 11 recnd φNZGN
13 1z 1
14 uzssz 1
15 zex V
16 14 15 climconst2 GN1×GNGN
17 12 13 16 sylancl φNZ×GNGN
18 3 ad2antrr φNZnNG:Z
19 1 uztrn2 NZnNnZ
20 19 adantll φNZnNnZ
21 18 20 ffvelcdmd φNZnNGn
22 eluzelz nNn
23 22 adantl φNZnNn
24 fvex GNV
25 24 fvconst2 n×GNn=GN
26 23 25 syl φNZnN×GNn=GN
27 11 adantr φNZnNGN
28 26 27 eqeltrd φNZnN×GNn
29 simpr φNZnNnN
30 18 adantr φNZnNkNnG:Z
31 simplr φNZnNNZ
32 elfzuz kNnkN
33 1 uztrn2 NZkNkZ
34 31 32 33 syl2an φNZnNkNnkZ
35 30 34 ffvelcdmd φNZnNkNnGk
36 simpl φNZnNφNZ
37 elfzuz kNn1kN
38 33 adantll φNZkNkZ
39 4 adantlr φNZkZGk+1Gk
40 38 39 syldan φNZkNGk+1Gk
41 36 37 40 syl2an φNZnNkNn1Gk+1Gk
42 29 35 41 monoord2 φNZnNGnGN
43 42 26 breqtrrd φNZnNGn×GNn
44 6 9 10 17 21 28 43 climle φNZ0GN