Description: Lemma for iseralt . A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iseralt.1 | |
|
iseralt.2 | |
||
iseralt.3 | |
||
iseralt.4 | |
||
iseralt.5 | |
||
Assertion | iseraltlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseralt.1 | |
|
2 | iseralt.2 | |
|
3 | iseralt.3 | |
|
4 | iseralt.4 | |
|
5 | iseralt.5 | |
|
6 | eqid | |
|
7 | eluzelz | |
|
8 | 7 1 | eleq2s | |
9 | 8 | adantl | |
10 | 5 | adantr | |
11 | 3 | ffvelcdmda | |
12 | 11 | recnd | |
13 | 1z | |
|
14 | uzssz | |
|
15 | zex | |
|
16 | 14 15 | climconst2 | |
17 | 12 13 16 | sylancl | |
18 | 3 | ad2antrr | |
19 | 1 | uztrn2 | |
20 | 19 | adantll | |
21 | 18 20 | ffvelcdmd | |
22 | eluzelz | |
|
23 | 22 | adantl | |
24 | fvex | |
|
25 | 24 | fvconst2 | |
26 | 23 25 | syl | |
27 | 11 | adantr | |
28 | 26 27 | eqeltrd | |
29 | simpr | |
|
30 | 18 | adantr | |
31 | simplr | |
|
32 | elfzuz | |
|
33 | 1 | uztrn2 | |
34 | 31 32 33 | syl2an | |
35 | 30 34 | ffvelcdmd | |
36 | simpl | |
|
37 | elfzuz | |
|
38 | 33 | adantll | |
39 | 4 | adantlr | |
40 | 38 39 | syldan | |
41 | 36 37 40 | syl2an | |
42 | 29 35 41 | monoord2 | |
43 | 42 26 | breqtrrd | |
44 | 6 9 10 17 21 28 43 | climle | |