Metamath Proof Explorer


Theorem iseralt

Description: The alternating series test. If G ( k ) is a decreasing sequence that converges to 0 , then sum_ k e. Z ( -u 1 ^ k ) x. G ( k ) is a convergent series. (Note that the first term is positive if M is even, and negative if M is odd. If the parity of your series does not match up with this, you will need to post-compose the series with multiplication by -u 1 using isermulc2 .) (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Hypotheses iseralt.1 Z=M
iseralt.2 φM
iseralt.3 φG:Z
iseralt.4 φkZGk+1Gk
iseralt.5 φG0
iseralt.6 φkZFk=1kGk
Assertion iseralt φseqM+Fdom

Proof

Step Hyp Ref Expression
1 iseralt.1 Z=M
2 iseralt.2 φM
3 iseralt.3 φG:Z
4 iseralt.4 φkZGk+1Gk
5 iseralt.5 φG0
6 iseralt.6 φkZFk=1kGk
7 seqex seqM+FV
8 7 a1i φseqM+FV
9 climrel Rel
10 9 brrelex1i G0GV
11 5 10 syl φGV
12 eqidd φnZGn=Gn
13 3 ffvelcdmda φnZGn
14 13 recnd φnZGn
15 1 2 11 12 14 clim0c φG0x+jZnjGn<x
16 5 15 mpbid φx+jZnjGn<x
17 simpr φx+jZjZ
18 17 1 eleqtrdi φx+jZjM
19 eluzelz jMj
20 uzid jjj
21 18 19 20 3syl φx+jZjj
22 peano2uz jjj+1j
23 2fveq3 n=j+1Gn=Gj+1
24 23 breq1d n=j+1Gn<xGj+1<x
25 24 rspcv j+1jnjGn<xGj+1<x
26 21 22 25 3syl φx+jZnjGn<xGj+1<x
27 eluzelz njn
28 27 ad2antll φjZnjn
29 28 zcnd φjZnjn
30 19 1 eleq2s jZj
31 30 ad2antrl φjZnjj
32 31 zcnd φjZnjj
33 29 32 subcld φjZnjnj
34 2cnd φjZnj2
35 2ne0 20
36 35 a1i φjZnj20
37 33 34 36 divcan2d φjZnj2nj2=nj
38 37 oveq2d φjZnjj+2nj2=j+n-j
39 32 29 pncan3d φjZnjj+n-j=n
40 38 39 eqtr2d φjZnjn=j+2nj2
41 40 adantr φjZnjnj2n=j+2nj2
42 41 fveq2d φjZnjnj2seqM+Fn=seqM+Fj+2nj2
43 42 fvoveq1d φjZnjnj2seqM+FnseqM+Fj=seqM+Fj+2nj2seqM+Fj
44 simpll φjZnjnj2φ
45 simpl jZnjjZ
46 45 ad2antlr φjZnjnj2jZ
47 simpr φjZnjnj2nj2
48 28 31 zsubcld φjZnjnj
49 48 zred φjZnjnj
50 2rp 2+
51 50 a1i φjZnj2+
52 eluzle njjn
53 52 ad2antll φjZnjjn
54 28 zred φjZnjn
55 31 zred φjZnjj
56 54 55 subge0d φjZnj0njjn
57 53 56 mpbird φjZnj0nj
58 49 51 57 divge0d φjZnj0nj2
59 58 adantr φjZnjnj20nj2
60 elnn0z nj20nj20nj2
61 47 59 60 sylanbrc φjZnjnj2nj20
62 1 2 3 4 5 6 iseraltlem3 φjZnj20seqM+Fj+2nj2seqM+FjGj+1seqM+Fj+2nj2+1seqM+FjGj+1
63 62 simpld φjZnj20seqM+Fj+2nj2seqM+FjGj+1
64 44 46 61 63 syl3anc φjZnjnj2seqM+Fj+2nj2seqM+FjGj+1
65 43 64 eqbrtrd φjZnjnj2seqM+FnseqM+FjGj+1
66 2div2e1 22=1
67 66 oveq2i n-j+1222=n-j+121
68 peano2cn njn-j+1
69 33 68 syl φjZnjn-j+1
70 69 34 34 36 divsubdird φjZnjnj+1-22=n-j+1222
71 df-2 2=1+1
72 71 oveq2i nj+1-2=nj+1-1+1
73 ax-1cn 1
74 73 a1i φjZnj1
75 33 74 74 pnpcan2d φjZnjnj+1-1+1=n-j-1
76 72 75 eqtrid φjZnjnj+1-2=n-j-1
77 76 oveq1d φjZnjnj+1-22=n-j-12
78 70 77 eqtr3d φjZnjn-j+1222=n-j-12
79 67 78 eqtr3id φjZnjn-j+121=n-j-12
80 79 oveq2d φjZnj2n-j+121=2n-j-12
81 subcl nj1n-j-1
82 33 73 81 sylancl φjZnjn-j-1
83 82 34 36 divcan2d φjZnj2n-j-12=n-j-1
84 29 32 74 sub32d φjZnjn-j-1=n-1-j
85 80 83 84 3eqtrd φjZnj2n-j+121=n-1-j
86 85 oveq2d φjZnjj+2n-j+121=j+n1-j
87 subcl n1n1
88 29 73 87 sylancl φjZnjn1
89 32 88 pncan3d φjZnjj+n1-j=n1
90 86 89 eqtrd φjZnjj+2n-j+121=n1
91 90 oveq1d φjZnjj+2n-j+121+1=n-1+1
92 npcan n1n-1+1=n
93 29 73 92 sylancl φjZnjn-1+1=n
94 91 93 eqtr2d φjZnjn=j+2n-j+121+1
95 94 adantr φjZnjn-j+12n=j+2n-j+121+1
96 95 fveq2d φjZnjn-j+12seqM+Fn=seqM+Fj+2n-j+121+1
97 96 fvoveq1d φjZnjn-j+12seqM+FnseqM+Fj=seqM+Fj+2n-j+121+1seqM+Fj
98 simpll φjZnjn-j+12φ
99 45 ad2antlr φjZnjn-j+12jZ
100 simpr φjZnjn-j+12n-j+12
101 uznn0sub njnj0
102 101 ad2antll φjZnjnj0
103 nn0p1nn nj0n-j+1
104 102 103 syl φjZnjn-j+1
105 104 nnrpd φjZnjn-j+1+
106 105 rphalfcld φjZnjn-j+12+
107 106 rpgt0d φjZnj0<n-j+12
108 107 adantr φjZnjn-j+120<n-j+12
109 elnnz n-j+12n-j+120<n-j+12
110 100 108 109 sylanbrc φjZnjn-j+12n-j+12
111 nnm1nn0 n-j+12n-j+1210
112 110 111 syl φjZnjn-j+12n-j+1210
113 1 2 3 4 5 6 iseraltlem3 φjZn-j+1210seqM+Fj+2n-j+121seqM+FjGj+1seqM+Fj+2n-j+121+1seqM+FjGj+1
114 113 simprd φjZn-j+1210seqM+Fj+2n-j+121+1seqM+FjGj+1
115 98 99 112 114 syl3anc φjZnjn-j+12seqM+Fj+2n-j+121+1seqM+FjGj+1
116 97 115 eqbrtrd φjZnjn-j+12seqM+FnseqM+FjGj+1
117 zeo njnj2n-j+12
118 48 117 syl φjZnjnj2n-j+12
119 65 116 118 mpjaodan φjZnjseqM+FnseqM+FjGj+1
120 1 peano2uzs jZj+1Z
121 120 adantr jZnjj+1Z
122 ffvelcdm G:Zj+1ZGj+1
123 3 121 122 syl2an φjZnjGj+1
124 1 2 3 4 5 iseraltlem1 φj+1Z0Gj+1
125 121 124 sylan2 φjZnj0Gj+1
126 123 125 absidd φjZnjGj+1=Gj+1
127 119 126 breqtrrd φjZnjseqM+FnseqM+FjGj+1
128 127 adantlr φx+jZnjseqM+FnseqM+FjGj+1
129 neg1rr 1
130 129 a1i φkZ1
131 neg1ne0 10
132 131 a1i φkZ10
133 eluzelz kMk
134 133 1 eleq2s kZk
135 134 adantl φkZk
136 130 132 135 reexpclzd φkZ1k
137 3 ffvelcdmda φkZGk
138 136 137 remulcld φkZ1kGk
139 6 138 eqeltrd φkZFk
140 1 2 139 serfre φseqM+F:Z
141 1 uztrn2 jZnjnZ
142 ffvelcdm seqM+F:ZnZseqM+Fn
143 140 141 142 syl2an φjZnjseqM+Fn
144 ffvelcdm seqM+F:ZjZseqM+Fj
145 140 45 144 syl2an φjZnjseqM+Fj
146 143 145 resubcld φjZnjseqM+FnseqM+Fj
147 146 recnd φjZnjseqM+FnseqM+Fj
148 147 abscld φjZnjseqM+FnseqM+Fj
149 148 adantlr φx+jZnjseqM+FnseqM+Fj
150 126 123 eqeltrd φjZnjGj+1
151 150 adantlr φx+jZnjGj+1
152 rpre x+x
153 152 ad2antlr φx+jZnjx
154 lelttr seqM+FnseqM+FjGj+1xseqM+FnseqM+FjGj+1Gj+1<xseqM+FnseqM+Fj<x
155 149 151 153 154 syl3anc φx+jZnjseqM+FnseqM+FjGj+1Gj+1<xseqM+FnseqM+Fj<x
156 128 155 mpand φx+jZnjGj+1<xseqM+FnseqM+Fj<x
157 140 adantr φx+seqM+F:Z
158 157 141 142 syl2an φx+jZnjseqM+Fn
159 156 158 jctild φx+jZnjGj+1<xseqM+FnseqM+FnseqM+Fj<x
160 159 anassrs φx+jZnjGj+1<xseqM+FnseqM+FnseqM+Fj<x
161 160 ralrimdva φx+jZGj+1<xnjseqM+FnseqM+FnseqM+Fj<x
162 26 161 syld φx+jZnjGn<xnjseqM+FnseqM+FnseqM+Fj<x
163 162 reximdva φx+jZnjGn<xjZnjseqM+FnseqM+FnseqM+Fj<x
164 163 ralimdva φx+jZnjGn<xx+jZnjseqM+FnseqM+FnseqM+Fj<x
165 16 164 mpd φx+jZnjseqM+FnseqM+FnseqM+Fj<x
166 1 8 165 caurcvg2 φseqM+Fdom