Metamath Proof Explorer


Theorem isf32lem7

Description: Lemma for isfin3-2 . Different K values are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a φF:ω𝒫G
isf32lem.b φxωFsucxFx
isf32lem.c φ¬ranFranF
isf32lem.d S=yω|FsucyFy
isf32lem.e J=uωιvS|vSu
isf32lem.f K=wSFwFsucwJ
Assertion isf32lem7 φABAωBωKAKB=

Proof

Step Hyp Ref Expression
1 isf32lem.a φF:ω𝒫G
2 isf32lem.b φxωFsucxFx
3 isf32lem.c φ¬ranFranF
4 isf32lem.d S=yω|FsucyFy
5 isf32lem.e J=uωιvS|vSu
6 isf32lem.f K=wSFwFsucwJ
7 6 fveq1i KA=wSFwFsucwJA
8 4 ssrab3 Sω
9 1 2 3 4 isf32lem5 φ¬SFin
10 5 fin23lem22 Sω¬SFinJ:ω1-1 ontoS
11 8 9 10 sylancr φJ:ω1-1 ontoS
12 f1of J:ω1-1 ontoSJ:ωS
13 11 12 syl φJ:ωS
14 fvco3 J:ωSAωwSFwFsucwJA=wSFwFsucwJA
15 13 14 sylan φAωwSFwFsucwJA=wSFwFsucwJA
16 15 ad2ant2r φABAωBωwSFwFsucwJA=wSFwFsucwJA
17 13 adantr φABJ:ωS
18 simpl AωBωAω
19 ffvelcdm J:ωSAωJAS
20 17 18 19 syl2an φABAωBωJAS
21 fveq2 w=JAFw=FJA
22 suceq w=JAsucw=sucJA
23 22 fveq2d w=JAFsucw=FsucJA
24 21 23 difeq12d w=JAFwFsucw=FJAFsucJA
25 eqid wSFwFsucw=wSFwFsucw
26 fvex FJAV
27 26 difexi FJAFsucJAV
28 24 25 27 fvmpt JASwSFwFsucwJA=FJAFsucJA
29 20 28 syl φABAωBωwSFwFsucwJA=FJAFsucJA
30 16 29 eqtrd φABAωBωwSFwFsucwJA=FJAFsucJA
31 7 30 eqtrid φABAωBωKA=FJAFsucJA
32 6 fveq1i KB=wSFwFsucwJB
33 fvco3 J:ωSBωwSFwFsucwJB=wSFwFsucwJB
34 13 33 sylan φBωwSFwFsucwJB=wSFwFsucwJB
35 34 ad2ant2rl φABAωBωwSFwFsucwJB=wSFwFsucwJB
36 simpr AωBωBω
37 ffvelcdm J:ωSBωJBS
38 17 36 37 syl2an φABAωBωJBS
39 fveq2 w=JBFw=FJB
40 suceq w=JBsucw=sucJB
41 40 fveq2d w=JBFsucw=FsucJB
42 39 41 difeq12d w=JBFwFsucw=FJBFsucJB
43 fvex FJBV
44 43 difexi FJBFsucJBV
45 42 25 44 fvmpt JBSwSFwFsucwJB=FJBFsucJB
46 38 45 syl φABAωBωwSFwFsucwJB=FJBFsucJB
47 35 46 eqtrd φABAωBωwSFwFsucwJB=FJBFsucJB
48 32 47 eqtrid φABAωBωKB=FJBFsucJB
49 31 48 ineq12d φABAωBωKAKB=FJAFsucJAFJBFsucJB
50 simpll φABAωBωφ
51 simplr φABAωBωAB
52 f1of1 J:ω1-1 ontoSJ:ω1-1S
53 11 52 syl φJ:ω1-1S
54 53 adantr φABJ:ω1-1S
55 f1fveq J:ω1-1SAωBωJA=JBA=B
56 54 55 sylan φABAωBωJA=JBA=B
57 56 biimpd φABAωBωJA=JBA=B
58 57 necon3d φABAωBωABJAJB
59 51 58 mpd φABAωBωJAJB
60 8 20 sselid φABAωBωJAω
61 8 38 sselid φABAωBωJBω
62 1 2 3 isf32lem4 φJAJBJAωJBωFJAFsucJAFJBFsucJB=
63 50 59 60 61 62 syl22anc φABAωBωFJAFsucJAFJBFsucJB=
64 49 63 eqtrd φABAωBωKAKB=