Description: Properties that determine a group operation. (Contributed by Jeff Madsen, 1-Dec-2009) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isgrpda.1 | |
|
isgrpda.2 | |
||
isgrpda.3 | |
||
isgrpda.4 | |
||
isgrpda.5 | |
||
isgrpda.6 | |
||
Assertion | isgrpda | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpda.1 | |
|
2 | isgrpda.2 | |
|
3 | isgrpda.3 | |
|
4 | isgrpda.4 | |
|
5 | isgrpda.5 | |
|
6 | isgrpda.6 | |
|
7 | 3 | ralrimivvva | |
8 | oveq1 | |
|
9 | 8 | eqeq1d | |
10 | 9 | cbvrexvw | |
11 | 6 10 | sylibr | |
12 | 5 11 | jca | |
13 | 12 | ralrimiva | |
14 | oveq1 | |
|
15 | 14 | eqeq1d | |
16 | eqeq2 | |
|
17 | 16 | rexbidv | |
18 | 15 17 | anbi12d | |
19 | 18 | ralbidv | |
20 | 19 | rspcev | |
21 | 4 13 20 | syl2anc | |
22 | 4 | adantr | |
23 | simpr | |
|
24 | 5 | eqcomd | |
25 | rspceov | |
|
26 | 22 23 24 25 | syl3anc | |
27 | 26 | ralrimiva | |
28 | foov | |
|
29 | 2 27 28 | sylanbrc | |
30 | forn | |
|
31 | 29 30 | syl | |
32 | 31 | sqxpeqd | |
33 | 32 31 | feq23d | |
34 | 31 | raleqdv | |
35 | 31 34 | raleqbidv | |
36 | 31 35 | raleqbidv | |
37 | 31 | rexeqdv | |
38 | 37 | anbi2d | |
39 | 31 38 | raleqbidv | |
40 | 31 39 | rexeqbidv | |
41 | 33 36 40 | 3anbi123d | |
42 | 2 7 21 41 | mpbir3and | |
43 | 1 1 | xpexd | |
44 | 2 43 | fexd | |
45 | eqid | |
|
46 | 45 | isgrpo | |
47 | 44 46 | syl | |
48 | 42 47 | mpbird | |