Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islpln5.b | |
|
islpln5.l | |
||
islpln5.j | |
||
islpln5.a | |
||
islpln5.p | |
||
Assertion | islpln5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpln5.b | |
|
2 | islpln5.l | |
|
3 | islpln5.j | |
|
4 | islpln5.a | |
|
5 | islpln5.p | |
|
6 | eqid | |
|
7 | 1 2 3 4 6 5 | islpln3 | |
8 | df-rex | |
|
9 | r19.41v | |
|
10 | an13 | |
|
11 | 9 10 | bitri | |
12 | 11 | exbii | |
13 | ovex | |
|
14 | an12 | |
|
15 | eleq1 | |
|
16 | breq2 | |
|
17 | 16 | notbid | |
18 | oveq1 | |
|
19 | 18 | eqeq2d | |
20 | 17 19 | anbi12d | |
21 | 20 | anbi2d | |
22 | 3anass | |
|
23 | 21 22 | bitr4di | |
24 | 15 23 | anbi12d | |
25 | 14 24 | bitrid | |
26 | 25 | rexbidv | |
27 | r19.42v | |
|
28 | r19.42v | |
|
29 | 26 27 28 | 3bitr3g | |
30 | 13 29 | ceqsexv | |
31 | 12 30 | bitri | |
32 | simpll | |
|
33 | simprl | |
|
34 | simprr | |
|
35 | 1 3 4 | hlatjcl | |
36 | 32 33 34 35 | syl3anc | |
37 | 36 | biantrurd | |
38 | 31 37 | bitr4id | |
39 | 38 | 2rexbidva | |
40 | rexcom4 | |
|
41 | 40 | rexbii | |
42 | rexcom4 | |
|
43 | 41 42 | bitri | |
44 | 39 43 | bitr3di | |
45 | rexcom | |
|
46 | 45 | rexbii | |
47 | rexcom | |
|
48 | 46 47 | bitri | |
49 | 1 3 4 6 | islln2 | |
50 | 49 | adantr | |
51 | 50 | anbi1d | |
52 | r19.42v | |
|
53 | r19.42v | |
|
54 | 53 | rexbii | |
55 | an32 | |
|
56 | 52 54 55 | 3bitr4ri | |
57 | 51 56 | bitrdi | |
58 | 57 | rexbidv | |
59 | 48 58 | bitr4id | |
60 | r19.42v | |
|
61 | 59 60 | bitrdi | |
62 | 61 | exbidv | |
63 | 44 62 | bitrd | |
64 | 8 63 | bitr4id | |
65 | 7 64 | bitrd | |