Metamath Proof Explorer


Theorem islpln5

Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012)

Ref Expression
Hypotheses islpln5.b B=BaseK
islpln5.l ˙=K
islpln5.j ˙=joinK
islpln5.a A=AtomsK
islpln5.p P=LPlanesK
Assertion islpln5 KHLXBXPpAqArApq¬r˙p˙qX=p˙q˙r

Proof

Step Hyp Ref Expression
1 islpln5.b B=BaseK
2 islpln5.l ˙=K
3 islpln5.j ˙=joinK
4 islpln5.a A=AtomsK
5 islpln5.p P=LPlanesK
6 eqid LLinesK=LLinesK
7 1 2 3 4 6 5 islpln3 KHLXBXPyLLinesKrA¬r˙yX=y˙r
8 df-rex yLLinesKrA¬r˙yX=y˙ryyLLinesKrA¬r˙yX=y˙r
9 r19.41v rAyB¬r˙yX=y˙rpqy=p˙qrAyB¬r˙yX=y˙rpqy=p˙q
10 an13 rAyB¬r˙yX=y˙rpqy=p˙qy=p˙qpqrAyB¬r˙yX=y˙r
11 9 10 bitri rAyB¬r˙yX=y˙rpqy=p˙qy=p˙qpqrAyB¬r˙yX=y˙r
12 11 exbii yrAyB¬r˙yX=y˙rpqy=p˙qyy=p˙qpqrAyB¬r˙yX=y˙r
13 ovex p˙qV
14 an12 pqyB¬r˙yX=y˙ryBpq¬r˙yX=y˙r
15 eleq1 y=p˙qyBp˙qB
16 breq2 y=p˙qr˙yr˙p˙q
17 16 notbid y=p˙q¬r˙y¬r˙p˙q
18 oveq1 y=p˙qy˙r=p˙q˙r
19 18 eqeq2d y=p˙qX=y˙rX=p˙q˙r
20 17 19 anbi12d y=p˙q¬r˙yX=y˙r¬r˙p˙qX=p˙q˙r
21 20 anbi2d y=p˙qpq¬r˙yX=y˙rpq¬r˙p˙qX=p˙q˙r
22 3anass pq¬r˙p˙qX=p˙q˙rpq¬r˙p˙qX=p˙q˙r
23 21 22 bitr4di y=p˙qpq¬r˙yX=y˙rpq¬r˙p˙qX=p˙q˙r
24 15 23 anbi12d y=p˙qyBpq¬r˙yX=y˙rp˙qBpq¬r˙p˙qX=p˙q˙r
25 14 24 bitrid y=p˙qpqyB¬r˙yX=y˙rp˙qBpq¬r˙p˙qX=p˙q˙r
26 25 rexbidv y=p˙qrApqyB¬r˙yX=y˙rrAp˙qBpq¬r˙p˙qX=p˙q˙r
27 r19.42v rApqyB¬r˙yX=y˙rpqrAyB¬r˙yX=y˙r
28 r19.42v rAp˙qBpq¬r˙p˙qX=p˙q˙rp˙qBrApq¬r˙p˙qX=p˙q˙r
29 26 27 28 3bitr3g y=p˙qpqrAyB¬r˙yX=y˙rp˙qBrApq¬r˙p˙qX=p˙q˙r
30 13 29 ceqsexv yy=p˙qpqrAyB¬r˙yX=y˙rp˙qBrApq¬r˙p˙qX=p˙q˙r
31 12 30 bitri yrAyB¬r˙yX=y˙rpqy=p˙qp˙qBrApq¬r˙p˙qX=p˙q˙r
32 simpll KHLXBpAqAKHL
33 simprl KHLXBpAqApA
34 simprr KHLXBpAqAqA
35 1 3 4 hlatjcl KHLpAqAp˙qB
36 32 33 34 35 syl3anc KHLXBpAqAp˙qB
37 36 biantrurd KHLXBpAqArApq¬r˙p˙qX=p˙q˙rp˙qBrApq¬r˙p˙qX=p˙q˙r
38 31 37 bitr4id KHLXBpAqAyrAyB¬r˙yX=y˙rpqy=p˙qrApq¬r˙p˙qX=p˙q˙r
39 38 2rexbidva KHLXBpAqAyrAyB¬r˙yX=y˙rpqy=p˙qpAqArApq¬r˙p˙qX=p˙q˙r
40 rexcom4 qAyrAyB¬r˙yX=y˙rpqy=p˙qyqArAyB¬r˙yX=y˙rpqy=p˙q
41 40 rexbii pAqAyrAyB¬r˙yX=y˙rpqy=p˙qpAyqArAyB¬r˙yX=y˙rpqy=p˙q
42 rexcom4 pAyqArAyB¬r˙yX=y˙rpqy=p˙qypAqArAyB¬r˙yX=y˙rpqy=p˙q
43 41 42 bitri pAqAyrAyB¬r˙yX=y˙rpqy=p˙qypAqArAyB¬r˙yX=y˙rpqy=p˙q
44 39 43 bitr3di KHLXBpAqArApq¬r˙p˙qX=p˙q˙rypAqArAyB¬r˙yX=y˙rpqy=p˙q
45 rexcom qArAyB¬r˙yX=y˙rpqy=p˙qrAqAyB¬r˙yX=y˙rpqy=p˙q
46 45 rexbii pAqArAyB¬r˙yX=y˙rpqy=p˙qpArAqAyB¬r˙yX=y˙rpqy=p˙q
47 rexcom pArAqAyB¬r˙yX=y˙rpqy=p˙qrApAqAyB¬r˙yX=y˙rpqy=p˙q
48 46 47 bitri pAqArAyB¬r˙yX=y˙rpqy=p˙qrApAqAyB¬r˙yX=y˙rpqy=p˙q
49 1 3 4 6 islln2 KHLyLLinesKyBpAqApqy=p˙q
50 49 adantr KHLXByLLinesKyBpAqApqy=p˙q
51 50 anbi1d KHLXByLLinesK¬r˙yX=y˙ryBpAqApqy=p˙q¬r˙yX=y˙r
52 r19.42v pAyB¬r˙yX=y˙rqApqy=p˙qyB¬r˙yX=y˙rpAqApqy=p˙q
53 r19.42v qAyB¬r˙yX=y˙rpqy=p˙qyB¬r˙yX=y˙rqApqy=p˙q
54 53 rexbii pAqAyB¬r˙yX=y˙rpqy=p˙qpAyB¬r˙yX=y˙rqApqy=p˙q
55 an32 yBpAqApqy=p˙q¬r˙yX=y˙ryB¬r˙yX=y˙rpAqApqy=p˙q
56 52 54 55 3bitr4ri yBpAqApqy=p˙q¬r˙yX=y˙rpAqAyB¬r˙yX=y˙rpqy=p˙q
57 51 56 bitrdi KHLXByLLinesK¬r˙yX=y˙rpAqAyB¬r˙yX=y˙rpqy=p˙q
58 57 rexbidv KHLXBrAyLLinesK¬r˙yX=y˙rrApAqAyB¬r˙yX=y˙rpqy=p˙q
59 48 58 bitr4id KHLXBpAqArAyB¬r˙yX=y˙rpqy=p˙qrAyLLinesK¬r˙yX=y˙r
60 r19.42v rAyLLinesK¬r˙yX=y˙ryLLinesKrA¬r˙yX=y˙r
61 59 60 bitrdi KHLXBpAqArAyB¬r˙yX=y˙rpqy=p˙qyLLinesKrA¬r˙yX=y˙r
62 61 exbidv KHLXBypAqArAyB¬r˙yX=y˙rpqy=p˙qyyLLinesKrA¬r˙yX=y˙r
63 44 62 bitrd KHLXBpAqArApq¬r˙p˙qX=p˙q˙ryyLLinesKrA¬r˙yX=y˙r
64 8 63 bitr4id KHLXByLLinesKrA¬r˙yX=y˙rpAqArApq¬r˙p˙qX=p˙q˙r
65 7 64 bitrd KHLXBXPpAqArApq¬r˙p˙qX=p˙q˙r