Metamath Proof Explorer


Theorem ismgmhm

Description: Property of a magma homomorphism. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses ismgmhm.b B=BaseS
ismgmhm.c C=BaseT
ismgmhm.p +˙=+S
ismgmhm.q ˙=+T
Assertion ismgmhm FSMgmHomTSMgmTMgmF:BCxByBFx+˙y=Fx˙Fy

Proof

Step Hyp Ref Expression
1 ismgmhm.b B=BaseS
2 ismgmhm.c C=BaseT
3 ismgmhm.p +˙=+S
4 ismgmhm.q ˙=+T
5 mgmhmrcl FSMgmHomTSMgmTMgm
6 fveq2 t=TBaset=BaseT
7 6 2 eqtr4di t=TBaset=C
8 fveq2 s=SBases=BaseS
9 8 1 eqtr4di s=SBases=B
10 7 9 oveqan12rd s=St=TBasetBases=CB
11 9 adantr s=St=TBases=B
12 fveq2 s=S+s=+S
13 12 3 eqtr4di s=S+s=+˙
14 13 oveqd s=Sx+sy=x+˙y
15 14 fveq2d s=Sfx+sy=fx+˙y
16 fveq2 t=T+t=+T
17 16 4 eqtr4di t=T+t=˙
18 17 oveqd t=Tfx+tfy=fx˙fy
19 15 18 eqeqan12d s=St=Tfx+sy=fx+tfyfx+˙y=fx˙fy
20 11 19 raleqbidv s=St=TyBasesfx+sy=fx+tfyyBfx+˙y=fx˙fy
21 11 20 raleqbidv s=St=TxBasesyBasesfx+sy=fx+tfyxByBfx+˙y=fx˙fy
22 10 21 rabeqbidv s=St=TfBasetBases|xBasesyBasesfx+sy=fx+tfy=fCB|xByBfx+˙y=fx˙fy
23 df-mgmhm MgmHom=sMgm,tMgmfBasetBases|xBasesyBasesfx+sy=fx+tfy
24 ovex CBV
25 24 rabex fCB|xByBfx+˙y=fx˙fyV
26 22 23 25 ovmpoa SMgmTMgmSMgmHomT=fCB|xByBfx+˙y=fx˙fy
27 26 eleq2d SMgmTMgmFSMgmHomTFfCB|xByBfx+˙y=fx˙fy
28 fveq1 f=Ffx+˙y=Fx+˙y
29 fveq1 f=Ffx=Fx
30 fveq1 f=Ffy=Fy
31 29 30 oveq12d f=Ffx˙fy=Fx˙Fy
32 28 31 eqeq12d f=Ffx+˙y=fx˙fyFx+˙y=Fx˙Fy
33 32 2ralbidv f=FxByBfx+˙y=fx˙fyxByBFx+˙y=Fx˙Fy
34 33 elrab FfCB|xByBfx+˙y=fx˙fyFCBxByBFx+˙y=Fx˙Fy
35 2 fvexi CV
36 1 fvexi BV
37 35 36 elmap FCBF:BC
38 37 anbi1i FCBxByBFx+˙y=Fx˙FyF:BCxByBFx+˙y=Fx˙Fy
39 34 38 bitri FfCB|xByBfx+˙y=fx˙fyF:BCxByBFx+˙y=Fx˙Fy
40 27 39 bitrdi SMgmTMgmFSMgmHomTF:BCxByBFx+˙y=Fx˙Fy
41 5 40 biadanii FSMgmHomTSMgmTMgmF:BCxByBFx+˙y=Fx˙Fy