Metamath Proof Explorer


Theorem ismtyval

Description: The set of isometries between two metric spaces. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion ismtyval M∞MetXN∞MetYMIsmtyN=f|f:X1-1 ontoYxXyXxMy=fxNfy

Proof

Step Hyp Ref Expression
1 df-ismty Ismty=mran∞Met,nran∞Metf|f:domdomm1-1 ontodomdomnxdomdommydomdommxmy=fxnfy
2 1 a1i M∞MetXN∞MetYIsmty=mran∞Met,nran∞Metf|f:domdomm1-1 ontodomdomnxdomdommydomdommxmy=fxnfy
3 dmeq m=Mdomm=domM
4 xmetf M∞MetXM:X×X*
5 4 fdmd M∞MetXdomM=X×X
6 3 5 sylan9eqr M∞MetXm=Mdomm=X×X
7 6 ad2ant2r M∞MetXN∞MetYm=Mn=Ndomm=X×X
8 7 dmeqd M∞MetXN∞MetYm=Mn=Ndomdomm=domX×X
9 dmxpid domX×X=X
10 8 9 eqtrdi M∞MetXN∞MetYm=Mn=Ndomdomm=X
11 10 f1oeq2d M∞MetXN∞MetYm=Mn=Nf:domdomm1-1 ontodomdomnf:X1-1 ontodomdomn
12 dmeq n=Ndomn=domN
13 xmetf N∞MetYN:Y×Y*
14 13 fdmd N∞MetYdomN=Y×Y
15 12 14 sylan9eqr N∞MetYn=Ndomn=Y×Y
16 15 ad2ant2l M∞MetXN∞MetYm=Mn=Ndomn=Y×Y
17 16 dmeqd M∞MetXN∞MetYm=Mn=Ndomdomn=domY×Y
18 dmxpid domY×Y=Y
19 17 18 eqtrdi M∞MetXN∞MetYm=Mn=Ndomdomn=Y
20 f1oeq3 domdomn=Yf:X1-1 ontodomdomnf:X1-1 ontoY
21 19 20 syl M∞MetXN∞MetYm=Mn=Nf:X1-1 ontodomdomnf:X1-1 ontoY
22 11 21 bitrd M∞MetXN∞MetYm=Mn=Nf:domdomm1-1 ontodomdomnf:X1-1 ontoY
23 oveq m=Mxmy=xMy
24 oveq n=Nfxnfy=fxNfy
25 23 24 eqeqan12d m=Mn=Nxmy=fxnfyxMy=fxNfy
26 25 adantl M∞MetXN∞MetYm=Mn=Nxmy=fxnfyxMy=fxNfy
27 10 26 raleqbidv M∞MetXN∞MetYm=Mn=Nydomdommxmy=fxnfyyXxMy=fxNfy
28 10 27 raleqbidv M∞MetXN∞MetYm=Mn=Nxdomdommydomdommxmy=fxnfyxXyXxMy=fxNfy
29 22 28 anbi12d M∞MetXN∞MetYm=Mn=Nf:domdomm1-1 ontodomdomnxdomdommydomdommxmy=fxnfyf:X1-1 ontoYxXyXxMy=fxNfy
30 29 abbidv M∞MetXN∞MetYm=Mn=Nf|f:domdomm1-1 ontodomdomnxdomdommydomdommxmy=fxnfy=f|f:X1-1 ontoYxXyXxMy=fxNfy
31 fvssunirn ∞MetXran∞Met
32 simpl M∞MetXN∞MetYM∞MetX
33 31 32 sselid M∞MetXN∞MetYMran∞Met
34 fvssunirn ∞MetYran∞Met
35 simpr M∞MetXN∞MetYN∞MetY
36 34 35 sselid M∞MetXN∞MetYNran∞Met
37 f1of f:X1-1 ontoYf:XY
38 37 adantr f:X1-1 ontoYxXyXxMy=fxNfyf:XY
39 elfvdm N∞MetYYdom∞Met
40 elfvdm M∞MetXXdom∞Met
41 elmapg Ydom∞MetXdom∞MetfYXf:XY
42 39 40 41 syl2anr M∞MetXN∞MetYfYXf:XY
43 38 42 imbitrrid M∞MetXN∞MetYf:X1-1 ontoYxXyXxMy=fxNfyfYX
44 43 abssdv M∞MetXN∞MetYf|f:X1-1 ontoYxXyXxMy=fxNfyYX
45 ovex YXV
46 45 ssex f|f:X1-1 ontoYxXyXxMy=fxNfyYXf|f:X1-1 ontoYxXyXxMy=fxNfyV
47 44 46 syl M∞MetXN∞MetYf|f:X1-1 ontoYxXyXxMy=fxNfyV
48 2 30 33 36 47 ovmpod M∞MetXN∞MetYMIsmtyN=f|f:X1-1 ontoYxXyXxMy=fxNfy