Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004) (Proof shortened by Mario Carneiro, 5-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | isotr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | simpl | |
|
3 | f1oco | |
|
4 | 1 2 3 | syl2anr | |
5 | f1of | |
|
6 | 5 | ad2antrr | |
7 | simprl | |
|
8 | 6 7 | ffvelcdmd | |
9 | simprr | |
|
10 | 6 9 | ffvelcdmd | |
11 | simplrr | |
|
12 | breq1 | |
|
13 | fveq2 | |
|
14 | 13 | breq1d | |
15 | 12 14 | bibi12d | |
16 | breq2 | |
|
17 | fveq2 | |
|
18 | 17 | breq2d | |
19 | 16 18 | bibi12d | |
20 | 15 19 | rspc2va | |
21 | 8 10 11 20 | syl21anc | |
22 | fvco3 | |
|
23 | 6 7 22 | syl2anc | |
24 | fvco3 | |
|
25 | 6 9 24 | syl2anc | |
26 | 23 25 | breq12d | |
27 | 21 26 | bitr4d | |
28 | 27 | bibi2d | |
29 | 28 | 2ralbidva | |
30 | 29 | biimpd | |
31 | 30 | impancom | |
32 | 31 | imp | |
33 | 4 32 | jca | |
34 | df-isom | |
|
35 | df-isom | |
|
36 | 34 35 | anbi12i | |
37 | df-isom | |
|
38 | 33 36 37 | 3imtr4i | |