Metamath Proof Explorer


Theorem isotr

Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004) (Proof shortened by Mario Carneiro, 5-Dec-2016)

Ref Expression
Assertion isotr HIsomR,SABGIsomS,TBCGHIsomR,TAC

Proof

Step Hyp Ref Expression
1 simpl G:B1-1 ontoCzBwBzSwGzTGwG:B1-1 ontoC
2 simpl H:A1-1 ontoBxAyAxRyHxSHyH:A1-1 ontoB
3 f1oco G:B1-1 ontoCH:A1-1 ontoBGH:A1-1 ontoC
4 1 2 3 syl2anr H:A1-1 ontoBxAyAxRyHxSHyG:B1-1 ontoCzBwBzSwGzTGwGH:A1-1 ontoC
5 f1of H:A1-1 ontoBH:AB
6 5 ad2antrr H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAH:AB
7 simprl H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAxA
8 6 7 ffvelcdmd H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAHxB
9 simprr H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAyA
10 6 9 ffvelcdmd H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAHyB
11 simplrr H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAzBwBzSwGzTGw
12 breq1 z=HxzSwHxSw
13 fveq2 z=HxGz=GHx
14 13 breq1d z=HxGzTGwGHxTGw
15 12 14 bibi12d z=HxzSwGzTGwHxSwGHxTGw
16 breq2 w=HyHxSwHxSHy
17 fveq2 w=HyGw=GHy
18 17 breq2d w=HyGHxTGwGHxTGHy
19 16 18 bibi12d w=HyHxSwGHxTGwHxSHyGHxTGHy
20 15 19 rspc2va HxBHyBzBwBzSwGzTGwHxSHyGHxTGHy
21 8 10 11 20 syl21anc H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAHxSHyGHxTGHy
22 fvco3 H:ABxAGHx=GHx
23 6 7 22 syl2anc H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAGHx=GHx
24 fvco3 H:AByAGHy=GHy
25 6 9 24 syl2anc H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAGHy=GHy
26 23 25 breq12d H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAGHxTGHyGHxTGHy
27 21 26 bitr4d H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAHxSHyGHxTGHy
28 27 bibi2d H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAxRyHxSHyxRyGHxTGHy
29 28 2ralbidva H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAxRyHxSHyxAyAxRyGHxTGHy
30 29 biimpd H:A1-1 ontoBG:B1-1 ontoCzBwBzSwGzTGwxAyAxRyHxSHyxAyAxRyGHxTGHy
31 30 impancom H:A1-1 ontoBxAyAxRyHxSHyG:B1-1 ontoCzBwBzSwGzTGwxAyAxRyGHxTGHy
32 31 imp H:A1-1 ontoBxAyAxRyHxSHyG:B1-1 ontoCzBwBzSwGzTGwxAyAxRyGHxTGHy
33 4 32 jca H:A1-1 ontoBxAyAxRyHxSHyG:B1-1 ontoCzBwBzSwGzTGwGH:A1-1 ontoCxAyAxRyGHxTGHy
34 df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy
35 df-isom GIsomS,TBCG:B1-1 ontoCzBwBzSwGzTGw
36 34 35 anbi12i HIsomR,SABGIsomS,TBCH:A1-1 ontoBxAyAxRyHxSHyG:B1-1 ontoCzBwBzSwGzTGw
37 df-isom GHIsomR,TACGH:A1-1 ontoCxAyAxRyGHxTGHy
38 33 36 37 3imtr4i HIsomR,SABGIsomS,TBCGHIsomR,TAC