| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ist0cls.1 |
|
| 2 |
|
ist0cls.2 |
|
| 3 |
|
eqid |
|
| 4 |
3
|
ist0 |
|
| 5 |
4
|
simplbi |
|
| 6 |
5
|
adantl |
|
| 7 |
4
|
baib |
|
| 8 |
7
|
adantl |
|
| 9 |
1
|
adantr |
|
| 10 |
9
|
eqcomd |
|
| 11 |
10
|
adantr |
|
| 12 |
|
simp-4r |
|
| 13 |
|
uniexg |
|
| 14 |
|
difexg |
|
| 15 |
12 13 14
|
3syl |
|
| 16 |
3
|
iscld |
|
| 17 |
16
|
adantl |
|
| 18 |
2
|
eleq2d |
|
| 19 |
18
|
adantr |
|
| 20 |
|
simpr |
|
| 21 |
|
difssd |
|
| 22 |
20 21
|
eqsstrd |
|
| 23 |
22
|
r19.29an |
|
| 24 |
|
simpr |
|
| 25 |
24
|
difeq2d |
|
| 26 |
3
|
eltopss |
|
| 27 |
26
|
ad5ant24 |
|
| 28 |
|
dfss4 |
|
| 29 |
27 28
|
sylib |
|
| 30 |
|
simplr |
|
| 31 |
29 30
|
eqeltrd |
|
| 32 |
25 31
|
eqeltrd |
|
| 33 |
32
|
r19.29an |
|
| 34 |
|
simpr |
|
| 35 |
|
simpr |
|
| 36 |
35
|
difeq2d |
|
| 37 |
36
|
eqeq2d |
|
| 38 |
|
simplr |
|
| 39 |
|
dfss4 |
|
| 40 |
38 39
|
sylib |
|
| 41 |
40
|
eqcomd |
|
| 42 |
34 37 41
|
rspcedvd |
|
| 43 |
33 42
|
impbida |
|
| 44 |
23 43
|
biadanid |
|
| 45 |
17 19 44
|
3bitr4d |
|
| 46 |
45
|
ad2antrr |
|
| 47 |
|
simpr |
|
| 48 |
47
|
eleq2d |
|
| 49 |
|
eldif |
|
| 50 |
49
|
baib |
|
| 51 |
50
|
ad3antlr |
|
| 52 |
48 51
|
bitrd |
|
| 53 |
47
|
eleq2d |
|
| 54 |
|
eldif |
|
| 55 |
54
|
baib |
|
| 56 |
55
|
ad2antlr |
|
| 57 |
53 56
|
bitrd |
|
| 58 |
52 57
|
bibi12d |
|
| 59 |
|
notbi |
|
| 60 |
58 59
|
bitr4di |
|
| 61 |
15 46 60
|
ralxfr2d |
|
| 62 |
61
|
bicomd |
|
| 63 |
62
|
imbi1d |
|
| 64 |
11 63
|
raleqbidva |
|
| 65 |
10 64
|
raleqbidva |
|
| 66 |
8 65
|
bitrd |
|
| 67 |
6 66
|
biadanid |
|