Description: The predicate "is a T_0 space", using closed sets. (Contributed by Thierry Arnoux, 16-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ist0cls.1 | |
|
ist0cls.2 | |
||
Assertion | ist0cld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist0cls.1 | |
|
2 | ist0cls.2 | |
|
3 | eqid | |
|
4 | 3 | ist0 | |
5 | 4 | simplbi | |
6 | 5 | adantl | |
7 | 4 | baib | |
8 | 7 | adantl | |
9 | 1 | adantr | |
10 | 9 | eqcomd | |
11 | 10 | adantr | |
12 | simp-4r | |
|
13 | uniexg | |
|
14 | difexg | |
|
15 | 12 13 14 | 3syl | |
16 | 3 | iscld | |
17 | 16 | adantl | |
18 | 2 | eleq2d | |
19 | 18 | adantr | |
20 | simpr | |
|
21 | difssd | |
|
22 | 20 21 | eqsstrd | |
23 | 22 | r19.29an | |
24 | simpr | |
|
25 | 24 | difeq2d | |
26 | 3 | eltopss | |
27 | 26 | ad5ant24 | |
28 | dfss4 | |
|
29 | 27 28 | sylib | |
30 | simplr | |
|
31 | 29 30 | eqeltrd | |
32 | 25 31 | eqeltrd | |
33 | 32 | r19.29an | |
34 | simpr | |
|
35 | simpr | |
|
36 | 35 | difeq2d | |
37 | 36 | eqeq2d | |
38 | simplr | |
|
39 | dfss4 | |
|
40 | 38 39 | sylib | |
41 | 40 | eqcomd | |
42 | 34 37 41 | rspcedvd | |
43 | 33 42 | impbida | |
44 | 23 43 | biadanid | |
45 | 17 19 44 | 3bitr4d | |
46 | 45 | ad2antrr | |
47 | simpr | |
|
48 | 47 | eleq2d | |
49 | eldif | |
|
50 | 49 | baib | |
51 | 50 | ad3antlr | |
52 | 48 51 | bitrd | |
53 | 47 | eleq2d | |
54 | eldif | |
|
55 | 54 | baib | |
56 | 55 | ad2antlr | |
57 | 53 56 | bitrd | |
58 | 52 57 | bibi12d | |
59 | notbi | |
|
60 | 58 59 | bitr4di | |
61 | 15 46 60 | ralxfr2d | |
62 | 61 | bicomd | |
63 | 62 | imbi1d | |
64 | 11 63 | raleqbidva | |
65 | 10 64 | raleqbidva | |
66 | 8 65 | bitrd | |
67 | 6 66 | biadanid | |