Step |
Hyp |
Ref |
Expression |
1 |
|
isubgr3stgr.v |
|
2 |
|
isubgr3stgr.u |
|
3 |
|
isubgr3stgr.c |
|
4 |
|
isubgr3stgr.n |
|
5 |
|
isubgr3stgr.s |
Could not format S = ( StarGr ` N ) : No typesetting found for |- S = ( StarGr ` N ) with typecode |- |
6 |
|
isubgr3stgr.w |
|
7 |
|
isubgr3stgr.e |
|
8 |
|
preq2 |
|
9 |
8
|
eqeq2d |
|
10 |
|
f1of |
|
11 |
10
|
adantr |
|
12 |
11
|
adantr |
|
13 |
|
simpr3 |
|
14 |
12 13
|
ffvelcdmd |
|
15 |
5
|
fveq2i |
Could not format ( Vtx ` S ) = ( Vtx ` ( StarGr ` N ) ) : No typesetting found for |- ( Vtx ` S ) = ( Vtx ` ( StarGr ` N ) ) with typecode |- |
16 |
|
stgrvtx |
Could not format ( N e. NN0 -> ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) ) : No typesetting found for |- ( N e. NN0 -> ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) ) with typecode |- |
17 |
4 16
|
ax-mp |
Could not format ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) : No typesetting found for |- ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) with typecode |- |
18 |
6 15 17
|
3eqtri |
|
19 |
18
|
eleq2i |
|
20 |
|
fz0sn0fz1 |
|
21 |
4 20
|
ax-mp |
|
22 |
21
|
eleq2i |
|
23 |
|
elun |
|
24 |
|
fvex |
|
25 |
24
|
elsn |
|
26 |
25
|
orbi1i |
|
27 |
23 26
|
bitri |
|
28 |
19 22 27
|
3bitri |
|
29 |
|
eqeq2 |
|
30 |
29
|
adantl |
|
31 |
30
|
adantr |
|
32 |
|
f1of1 |
|
33 |
|
dff14a |
|
34 |
|
simpl |
|
35 |
|
simpr |
|
36 |
34 35
|
neeq12d |
|
37 |
|
fveq2 |
|
38 |
37
|
adantr |
|
39 |
|
fveq2 |
|
40 |
39
|
adantl |
|
41 |
38 40
|
neeq12d |
|
42 |
36 41
|
imbi12d |
|
43 |
42
|
rspc2gv |
|
44 |
43
|
3adant1 |
|
45 |
|
id |
|
46 |
|
eqneqall |
|
47 |
46
|
eqcoms |
|
48 |
47
|
com12 |
|
49 |
45 48
|
syl6com |
|
50 |
49
|
3ad2ant1 |
|
51 |
44 50
|
syld |
|
52 |
51
|
adantld |
|
53 |
33 52
|
biimtrid |
|
54 |
32 53
|
syl5com |
|
55 |
54
|
adantr |
|
56 |
55
|
imp |
|
57 |
31 56
|
sylbird |
|
58 |
|
idd |
|
59 |
57 58
|
jaod |
|
60 |
28 59
|
biimtrid |
|
61 |
14 60
|
mpd |
|
62 |
|
f1ofn |
|
63 |
62
|
adantr |
|
64 |
|
3simpc |
|
65 |
63 64
|
anim12i |
|
66 |
|
3anass |
|
67 |
65 66
|
sylibr |
|
68 |
|
fnimapr |
|
69 |
67 68
|
syl |
|
70 |
|
simpr |
|
71 |
70
|
adantr |
|
72 |
71
|
preq1d |
|
73 |
69 72
|
eqtrd |
|
74 |
9 61 73
|
rspcedvdw |
|
75 |
74
|
ex |
|
76 |
|
neeq1 |
|
77 |
|
eleq1 |
|
78 |
76 77
|
3anbi12d |
|
79 |
|
preq1 |
|
80 |
79
|
imaeq2d |
|
81 |
80
|
eqeq1d |
|
82 |
81
|
rexbidv |
|
83 |
78 82
|
imbi12d |
|
84 |
75 83
|
imbitrrid |
|
85 |
84
|
3imp |
|