Metamath Proof Explorer


Theorem itg2i1fseqle

Description: Subject to the conditions coming from mbfi1fseq , the sequence of simple functions are all less than the target function F . (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itg2i1fseq.1 φFMblFn
itg2i1fseq.2 φF:0+∞
itg2i1fseq.3 φP:dom1
itg2i1fseq.4 φn0𝑝fPnPnfPn+1
itg2i1fseq.5 φxnPnxFx
Assertion itg2i1fseqle φMPMfF

Proof

Step Hyp Ref Expression
1 itg2i1fseq.1 φFMblFn
2 itg2i1fseq.2 φF:0+∞
3 itg2i1fseq.3 φP:dom1
4 itg2i1fseq.4 φn0𝑝fPnPnfPn+1
5 itg2i1fseq.5 φxnPnxFx
6 fveq2 n=MPn=PM
7 6 fveq1d n=MPny=PMy
8 eqid nPny=nPny
9 fvex PMyV
10 7 8 9 fvmpt MnPnyM=PMy
11 10 ad2antlr φMynPnyM=PMy
12 nnuz =1
13 simplr φMyM
14 fveq2 x=yPnx=Pny
15 14 mpteq2dv x=ynPnx=nPny
16 fveq2 x=yFx=Fy
17 15 16 breq12d x=ynPnxFxnPnyFy
18 17 rspccva xnPnxFxynPnyFy
19 5 18 sylan φynPnyFy
20 19 adantlr φMynPnyFy
21 fveq2 n=kPn=Pk
22 21 fveq1d n=kPny=Pky
23 fvex PkyV
24 22 8 23 fvmpt knPnyk=Pky
25 24 adantl φyknPnyk=Pky
26 3 ffvelcdmda φkPkdom1
27 i1ff Pkdom1Pk:
28 26 27 syl φkPk:
29 28 ffvelcdmda φkyPky
30 29 an32s φykPky
31 25 30 eqeltrd φyknPnyk
32 31 adantllr φMyknPnyk
33 simpr 0𝑝fPnPnfPn+1PnfPn+1
34 33 ralimi n0𝑝fPnPnfPn+1nPnfPn+1
35 4 34 syl φnPnfPn+1
36 fvoveq1 n=kPn+1=Pk+1
37 21 36 breq12d n=kPnfPn+1PkfPk+1
38 37 rspccva nPnfPn+1kPkfPk+1
39 35 38 sylan φkPkfPk+1
40 ffn Pk:PkFn
41 26 27 40 3syl φkPkFn
42 peano2nn kk+1
43 ffvelcdm P:dom1k+1Pk+1dom1
44 3 42 43 syl2an φkPk+1dom1
45 i1ff Pk+1dom1Pk+1:
46 ffn Pk+1:Pk+1Fn
47 44 45 46 3syl φkPk+1Fn
48 reex V
49 48 a1i φkV
50 inidm =
51 eqidd φkyPky=Pky
52 eqidd φkyPk+1y=Pk+1y
53 41 47 49 49 50 51 52 ofrfval φkPkfPk+1yPkyPk+1y
54 39 53 mpbid φkyPkyPk+1y
55 54 r19.21bi φkyPkyPk+1y
56 55 an32s φykPkyPk+1y
57 fveq2 n=k+1Pn=Pk+1
58 57 fveq1d n=k+1Pny=Pk+1y
59 fvex Pk+1yV
60 58 8 59 fvmpt k+1nPnyk+1=Pk+1y
61 42 60 syl knPnyk+1=Pk+1y
62 61 adantl φyknPnyk+1=Pk+1y
63 56 25 62 3brtr4d φyknPnyknPnyk+1
64 63 adantllr φMyknPnyknPnyk+1
65 12 13 20 32 64 climub φMynPnyMFy
66 11 65 eqbrtrrd φMyPMyFy
67 66 ralrimiva φMyPMyFy
68 3 ffvelcdmda φMPMdom1
69 i1ff PMdom1PM:
70 ffn PM:PMFn
71 68 69 70 3syl φMPMFn
72 2 ffnd φFFn
73 72 adantr φMFFn
74 48 a1i φMV
75 eqidd φMyPMy=PMy
76 eqidd φMyFy=Fy
77 71 73 74 74 50 75 76 ofrfval φMPMfFyPMyFy
78 67 77 mpbird φMPMfF