Metamath Proof Explorer


Theorem itgaddlem2

Description: Lemma for itgadd . (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itgadd.1 φxABV
itgadd.2 φxAB𝐿1
itgadd.3 φxACV
itgadd.4 φxAC𝐿1
itgadd.5 φxAB
itgadd.6 φxAC
Assertion itgaddlem2 φAB+Cdx=ABdx+ACdx

Proof

Step Hyp Ref Expression
1 itgadd.1 φxABV
2 itgadd.2 φxAB𝐿1
3 itgadd.3 φxACV
4 itgadd.4 φxAC𝐿1
5 itgadd.5 φxAB
6 itgadd.6 φxAC
7 max0sub Bif0BB0if0BB0=B
8 5 7 syl φxAif0BB0if0BB0=B
9 max0sub Cif0CC0if0CC0=C
10 6 9 syl φxAif0CC0if0CC0=C
11 8 10 oveq12d φxAif0BB0if0BB0+if0CC0-if0CC0=B+C
12 0re 0
13 ifcl B0if0BB0
14 5 12 13 sylancl φxAif0BB0
15 14 recnd φxAif0BB0
16 ifcl C0if0CC0
17 6 12 16 sylancl φxAif0CC0
18 17 recnd φxAif0CC0
19 5 renegcld φxAB
20 ifcl B0if0BB0
21 19 12 20 sylancl φxAif0BB0
22 21 recnd φxAif0BB0
23 6 renegcld φxAC
24 ifcl C0if0CC0
25 23 12 24 sylancl φxAif0CC0
26 25 recnd φxAif0CC0
27 15 18 22 26 addsub4d φxAif0BB0+if0CC0-if0BB0+if0CC0=if0BB0if0BB0+if0CC0-if0CC0
28 5 6 readdcld φxAB+C
29 max0sub B+Cif0B+CB+C0if0B+CB+C0=B+C
30 28 29 syl φxAif0B+CB+C0if0B+CB+C0=B+C
31 11 27 30 3eqtr4rd φxAif0B+CB+C0if0B+CB+C0=if0BB0+if0CC0-if0BB0+if0CC0
32 28 renegcld φxAB+C
33 ifcl B+C0if0B+CB+C0
34 32 12 33 sylancl φxAif0B+CB+C0
35 34 recnd φxAif0B+CB+C0
36 15 18 addcld φxAif0BB0+if0CC0
37 ifcl B+C0if0B+CB+C0
38 28 12 37 sylancl φxAif0B+CB+C0
39 38 recnd φxAif0B+CB+C0
40 22 26 addcld φxAif0BB0+if0CC0
41 35 36 39 40 addsubeq4d φxAif0B+CB+C0+if0BB0+if0CC0=if0B+CB+C0+if0BB0+if0CC0if0B+CB+C0if0B+CB+C0=if0BB0+if0CC0-if0BB0+if0CC0
42 31 41 mpbird φxAif0B+CB+C0+if0BB0+if0CC0=if0B+CB+C0+if0BB0+if0CC0
43 42 itgeq2dv φAif0B+CB+C0+if0BB0+if0CC0dx=Aif0B+CB+C0+if0BB0+if0CC0dx
44 1 2 3 4 ibladd φxAB+C𝐿1
45 28 iblre φxAB+C𝐿1xAif0B+CB+C0𝐿1xAif0B+CB+C0𝐿1
46 44 45 mpbid φxAif0B+CB+C0𝐿1xAif0B+CB+C0𝐿1
47 46 simprd φxAif0B+CB+C0𝐿1
48 14 17 readdcld φxAif0BB0+if0CC0
49 5 iblre φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1
50 2 49 mpbid φxAif0BB0𝐿1xAif0BB0𝐿1
51 50 simpld φxAif0BB0𝐿1
52 6 iblre φxAC𝐿1xAif0CC0𝐿1xAif0CC0𝐿1
53 4 52 mpbid φxAif0CC0𝐿1xAif0CC0𝐿1
54 53 simpld φxAif0CC0𝐿1
55 14 51 17 54 ibladd φxAif0BB0+if0CC0𝐿1
56 max1 0B+C0if0B+CB+C0
57 12 32 56 sylancr φxA0if0B+CB+C0
58 max1 0B0if0BB0
59 12 5 58 sylancr φxA0if0BB0
60 max1 0C0if0CC0
61 12 6 60 sylancr φxA0if0CC0
62 14 17 59 61 addge0d φxA0if0BB0+if0CC0
63 34 47 48 55 34 48 57 62 itgaddlem1 φAif0B+CB+C0+if0BB0+if0CC0dx=Aif0B+CB+C0dx+Aif0BB0+if0CC0dx
64 46 simpld φxAif0B+CB+C0𝐿1
65 21 25 readdcld φxAif0BB0+if0CC0
66 50 simprd φxAif0BB0𝐿1
67 53 simprd φxAif0CC0𝐿1
68 21 66 25 67 ibladd φxAif0BB0+if0CC0𝐿1
69 max1 0B+C0if0B+CB+C0
70 12 28 69 sylancr φxA0if0B+CB+C0
71 max1 0B0if0BB0
72 12 19 71 sylancr φxA0if0BB0
73 max1 0C0if0CC0
74 12 23 73 sylancr φxA0if0CC0
75 21 25 72 74 addge0d φxA0if0BB0+if0CC0
76 38 64 65 68 38 65 70 75 itgaddlem1 φAif0B+CB+C0+if0BB0+if0CC0dx=Aif0B+CB+C0dx+Aif0BB0+if0CC0dx
77 43 63 76 3eqtr3d φAif0B+CB+C0dx+Aif0BB0+if0CC0dx=Aif0B+CB+C0dx+Aif0BB0+if0CC0dx
78 34 47 itgcl φAif0B+CB+C0dx
79 14 51 17 54 14 17 59 61 itgaddlem1 φAif0BB0+if0CC0dx=Aif0BB0dx+Aif0CC0dx
80 14 51 itgcl φAif0BB0dx
81 17 54 itgcl φAif0CC0dx
82 80 81 addcld φAif0BB0dx+Aif0CC0dx
83 79 82 eqeltrd φAif0BB0+if0CC0dx
84 38 64 itgcl φAif0B+CB+C0dx
85 21 66 25 67 21 25 72 74 itgaddlem1 φAif0BB0+if0CC0dx=Aif0BB0dx+Aif0CC0dx
86 21 66 itgcl φAif0BB0dx
87 25 67 itgcl φAif0CC0dx
88 86 87 addcld φAif0BB0dx+Aif0CC0dx
89 85 88 eqeltrd φAif0BB0+if0CC0dx
90 78 83 84 89 addsubeq4d φAif0B+CB+C0dx+Aif0BB0+if0CC0dx=Aif0B+CB+C0dx+Aif0BB0+if0CC0dxAif0B+CB+C0dxAif0B+CB+C0dx=Aif0BB0+if0CC0dxAif0BB0+if0CC0dx
91 77 90 mpbid φAif0B+CB+C0dxAif0B+CB+C0dx=Aif0BB0+if0CC0dxAif0BB0+if0CC0dx
92 79 85 oveq12d φAif0BB0+if0CC0dxAif0BB0+if0CC0dx=Aif0BB0dx+Aif0CC0dx-Aif0BB0dx+Aif0CC0dx
93 80 81 86 87 addsub4d φAif0BB0dx+Aif0CC0dx-Aif0BB0dx+Aif0CC0dx=Aif0BB0dxAif0BB0dx+Aif0CC0dx-Aif0CC0dx
94 91 92 93 3eqtrd φAif0B+CB+C0dxAif0B+CB+C0dx=Aif0BB0dxAif0BB0dx+Aif0CC0dx-Aif0CC0dx
95 28 44 itgreval φAB+Cdx=Aif0B+CB+C0dxAif0B+CB+C0dx
96 5 2 itgreval φABdx=Aif0BB0dxAif0BB0dx
97 6 4 itgreval φACdx=Aif0CC0dxAif0CC0dx
98 96 97 oveq12d φABdx+ACdx=Aif0BB0dxAif0BB0dx+Aif0CC0dx-Aif0CC0dx
99 94 95 98 3eqtr4d φAB+Cdx=ABdx+ACdx