Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgless.1 | |
|
itgless.2 | |
||
itgless.3 | |
||
itgless.4 | |
||
itgless.5 | |
||
Assertion | itgless | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgless.1 | |
|
2 | itgless.2 | |
|
3 | itgless.3 | |
|
4 | itgless.4 | |
|
5 | itgless.5 | |
|
6 | itgss2 | |
|
7 | 1 6 | syl | |
8 | iblmbf | |
|
9 | 5 8 | syl | |
10 | 9 3 | mbfdm2 | |
11 | 1 | sselda | |
12 | 11 3 | syldan | |
13 | 0re | |
|
14 | ifcl | |
|
15 | 12 13 14 | sylancl | |
16 | eldifn | |
|
17 | 16 | adantl | |
18 | 17 | iffalsed | |
19 | iftrue | |
|
20 | 19 | mpteq2ia | |
21 | 1 2 3 5 | iblss | |
22 | 20 21 | eqeltrid | |
23 | 1 10 15 18 22 | iblss2 | |
24 | 3 13 14 | sylancl | |
25 | 3 | leidd | |
26 | breq1 | |
|
27 | breq1 | |
|
28 | 26 27 | ifboth | |
29 | 25 4 28 | syl2anc | |
30 | 23 5 24 3 29 | itgle | |
31 | 7 30 | eqbrtrd | |