Metamath Proof Explorer


Theorem iunrelexpmin1

Description: The indexed union of relation exponentiation over the natural numbers is the minimum transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020)

Ref Expression
Hypothesis iunrelexpmin1.def C = r V n N r r n
Assertion iunrelexpmin1 R V N = s R s s s s C R s

Proof

Step Hyp Ref Expression
1 iunrelexpmin1.def C = r V n N r r n
2 simplr R V N = r = R N =
3 simpr R V N = r = R r = R
4 3 oveq1d R V N = r = R r r n = R r n
5 2 4 iuneq12d R V N = r = R n N r r n = n R r n
6 elex R V R V
7 6 adantr R V N = R V
8 nnex V
9 ovex R r n V
10 8 9 iunex n R r n V
11 10 a1i R V N = n R r n V
12 1 5 7 11 fvmptd2 R V N = C R = n R r n
13 relexp1g R V R r 1 = R
14 13 sseq1d R V R r 1 s R s
15 14 anbi1d R V R r 1 s s s s R s s s s
16 oveq2 x = 1 R r x = R r 1
17 16 sseq1d x = 1 R r x s R r 1 s
18 17 imbi2d x = 1 R V R r 1 s s s s R r x s R V R r 1 s s s s R r 1 s
19 oveq2 x = y R r x = R r y
20 19 sseq1d x = y R r x s R r y s
21 20 imbi2d x = y R V R r 1 s s s s R r x s R V R r 1 s s s s R r y s
22 oveq2 x = y + 1 R r x = R r y + 1
23 22 sseq1d x = y + 1 R r x s R r y + 1 s
24 23 imbi2d x = y + 1 R V R r 1 s s s s R r x s R V R r 1 s s s s R r y + 1 s
25 oveq2 x = n R r x = R r n
26 25 sseq1d x = n R r x s R r n s
27 26 imbi2d x = n R V R r 1 s s s s R r x s R V R r 1 s s s s R r n s
28 simprl R V R r 1 s s s s R r 1 s
29 simp1 y R V R r 1 s s s s R r y s y
30 1nn 1
31 30 a1i y R V R r 1 s s s s R r y s 1
32 simp2l y R V R r 1 s s s s R r y s R V
33 relexpaddnn y 1 R V R r y R r 1 = R r y + 1
34 29 31 32 33 syl3anc y R V R r 1 s s s s R r y s R r y R r 1 = R r y + 1
35 simp2rr y R V R r 1 s s s s R r y s s s s
36 simp3 y R V R r 1 s s s s R r y s R r y s
37 simp2rl y R V R r 1 s s s s R r y s R r 1 s
38 35 36 37 trrelssd y R V R r 1 s s s s R r y s R r y R r 1 s
39 34 38 eqsstrrd y R V R r 1 s s s s R r y s R r y + 1 s
40 39 3exp y R V R r 1 s s s s R r y s R r y + 1 s
41 40 a2d y R V R r 1 s s s s R r y s R V R r 1 s s s s R r y + 1 s
42 18 21 24 27 28 41 nnind n R V R r 1 s s s s R r n s
43 42 com12 R V R r 1 s s s s n R r n s
44 43 ralrimiv R V R r 1 s s s s n R r n s
45 iunss n R r n s n R r n s
46 44 45 sylibr R V R r 1 s s s s n R r n s
47 46 ex R V R r 1 s s s s n R r n s
48 15 47 sylbird R V R s s s s n R r n s
49 48 adantr R V N = R s s s s n R r n s
50 sseq1 C R = n R r n C R s n R r n s
51 50 imbi2d C R = n R r n R s s s s C R s R s s s s n R r n s
52 49 51 syl5ibr C R = n R r n R V N = R s s s s C R s
53 12 52 mpcom R V N = R s s s s C R s
54 53 alrimiv R V N = s R s s s s C R s