Metamath Proof Explorer


Theorem jm2.17b

Description: Weak form of the second half of lemma 2.17 of JonesMatijasevic p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014)

Ref Expression
Assertion jm2.17b A2N0AYrmN+12AN

Proof

Step Hyp Ref Expression
1 oveq1 a=0a+1=0+1
2 1 oveq2d a=0AYrma+1=AYrm0+1
3 oveq2 a=02Aa=2A0
4 2 3 breq12d a=0AYrma+12AaAYrm0+12A0
5 4 imbi2d a=0A2AYrma+12AaA2AYrm0+12A0
6 oveq1 a=ba+1=b+1
7 6 oveq2d a=bAYrma+1=AYrmb+1
8 oveq2 a=b2Aa=2Ab
9 7 8 breq12d a=bAYrma+12AaAYrmb+12Ab
10 9 imbi2d a=bA2AYrma+12AaA2AYrmb+12Ab
11 oveq1 a=b+1a+1=b+1+1
12 11 oveq2d a=b+1AYrma+1=AYrmb+1+1
13 oveq2 a=b+12Aa=2Ab+1
14 12 13 breq12d a=b+1AYrma+12AaAYrmb+1+12Ab+1
15 14 imbi2d a=b+1A2AYrma+12AaA2AYrmb+1+12Ab+1
16 oveq1 a=Na+1=N+1
17 16 oveq2d a=NAYrma+1=AYrmN+1
18 oveq2 a=N2Aa=2AN
19 17 18 breq12d a=NAYrma+12AaAYrmN+12AN
20 19 imbi2d a=NA2AYrma+12AaA2AYrmN+12AN
21 1le1 11
22 0p1e1 0+1=1
23 22 oveq2i AYrm0+1=AYrm1
24 rmy1 A2AYrm1=1
25 23 24 eqtrid A2AYrm0+1=1
26 2re 2
27 eluzelre A2A
28 remulcl 2A2A
29 26 27 28 sylancr A22A
30 29 recnd A22A
31 30 exp0d A22A0=1
32 25 31 breq12d A2AYrm0+12A011
33 21 32 mpbiri A2AYrm0+12A0
34 simpr b0A2A2
35 nn0z b0b
36 35 adantr b0A2b
37 36 peano2zd b0A2b+1
38 rmyluc2 A2b+1AYrmb+1+1=2AAYrmb+1AYrmb+1-1
39 34 37 38 syl2anc b0A2AYrmb+1+1=2AAYrmb+1AYrmb+1-1
40 rmxypos A2b00<AXrmb0AYrmb
41 40 simprd A2b00AYrmb
42 41 ancoms b0A20AYrmb
43 nn0re b0b
44 43 adantr b0A2b
45 44 recnd b0A2b
46 ax-1cn 1
47 pncan b1b+1-1=b
48 45 46 47 sylancl b0A2b+1-1=b
49 48 oveq2d b0A2AYrmb+1-1=AYrmb
50 42 49 breqtrrd b0A20AYrmb+1-1
51 27 adantl b0A2A
52 26 51 28 sylancr b0A22A
53 frmy Yrm:2×
54 53 fovcl A2b+1AYrmb+1
55 54 zred A2b+1AYrmb+1
56 34 37 55 syl2anc b0A2AYrmb+1
57 52 56 remulcld b0A22AAYrmb+1
58 53 fovcl A2bAYrmb
59 58 zred A2bAYrmb
60 34 36 59 syl2anc b0A2AYrmb
61 49 60 eqeltrd b0A2AYrmb+1-1
62 57 61 subge02d b0A20AYrmb+1-12AAYrmb+1AYrmb+1-12AAYrmb+1
63 50 62 mpbid b0A22AAYrmb+1AYrmb+1-12AAYrmb+1
64 39 63 eqbrtrd b0A2AYrmb+1+12AAYrmb+1
65 64 3adant3 b0A2AYrmb+12AbAYrmb+1+12AAYrmb+1
66 simpl b0A2b0
67 52 66 reexpcld b0A22Ab
68 2nn 2
69 eluz2nn A2A
70 nnmulcl 2A2A
71 68 69 70 sylancr A22A
72 71 nngt0d A20<2A
73 72 adantl b0A20<2A
74 lemul2 AYrmb+12Ab2A0<2AAYrmb+12Ab2AAYrmb+12A2Ab
75 56 67 52 73 74 syl112anc b0A2AYrmb+12Ab2AAYrmb+12A2Ab
76 75 biimp3a b0A2AYrmb+12Ab2AAYrmb+12A2Ab
77 52 recnd b0A22A
78 77 66 expp1d b0A22Ab+1=2Ab2A
79 67 recnd b0A22Ab
80 79 77 mulcomd b0A22Ab2A=2A2Ab
81 78 80 eqtrd b0A22Ab+1=2A2Ab
82 81 3adant3 b0A2AYrmb+12Ab2Ab+1=2A2Ab
83 76 82 breqtrrd b0A2AYrmb+12Ab2AAYrmb+12Ab+1
84 37 peano2zd b0A2b+1+1
85 53 fovcl A2b+1+1AYrmb+1+1
86 85 zred A2b+1+1AYrmb+1+1
87 34 84 86 syl2anc b0A2AYrmb+1+1
88 peano2nn0 b0b+10
89 88 adantr b0A2b+10
90 52 89 reexpcld b0A22Ab+1
91 letr AYrmb+1+12AAYrmb+12Ab+1AYrmb+1+12AAYrmb+12AAYrmb+12Ab+1AYrmb+1+12Ab+1
92 87 57 90 91 syl3anc b0A2AYrmb+1+12AAYrmb+12AAYrmb+12Ab+1AYrmb+1+12Ab+1
93 92 3adant3 b0A2AYrmb+12AbAYrmb+1+12AAYrmb+12AAYrmb+12Ab+1AYrmb+1+12Ab+1
94 65 83 93 mp2and b0A2AYrmb+12AbAYrmb+1+12Ab+1
95 94 3exp b0A2AYrmb+12AbAYrmb+1+12Ab+1
96 95 a2d b0A2AYrmb+12AbA2AYrmb+1+12Ab+1
97 5 10 15 20 33 96 nn0ind N0A2AYrmN+12AN
98 97 impcom A2N0AYrmN+12AN