Metamath Proof Explorer


Theorem jm2.17b

Description: Weak form of the second half of lemma 2.17 of JonesMatijasevic p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014)

Ref Expression
Assertion jm2.17b A 2 N 0 A Y rm N + 1 2 A N

Proof

Step Hyp Ref Expression
1 oveq1 a = 0 a + 1 = 0 + 1
2 1 oveq2d a = 0 A Y rm a + 1 = A Y rm 0 + 1
3 oveq2 a = 0 2 A a = 2 A 0
4 2 3 breq12d a = 0 A Y rm a + 1 2 A a A Y rm 0 + 1 2 A 0
5 4 imbi2d a = 0 A 2 A Y rm a + 1 2 A a A 2 A Y rm 0 + 1 2 A 0
6 oveq1 a = b a + 1 = b + 1
7 6 oveq2d a = b A Y rm a + 1 = A Y rm b + 1
8 oveq2 a = b 2 A a = 2 A b
9 7 8 breq12d a = b A Y rm a + 1 2 A a A Y rm b + 1 2 A b
10 9 imbi2d a = b A 2 A Y rm a + 1 2 A a A 2 A Y rm b + 1 2 A b
11 oveq1 a = b + 1 a + 1 = b + 1 + 1
12 11 oveq2d a = b + 1 A Y rm a + 1 = A Y rm b + 1 + 1
13 oveq2 a = b + 1 2 A a = 2 A b + 1
14 12 13 breq12d a = b + 1 A Y rm a + 1 2 A a A Y rm b + 1 + 1 2 A b + 1
15 14 imbi2d a = b + 1 A 2 A Y rm a + 1 2 A a A 2 A Y rm b + 1 + 1 2 A b + 1
16 oveq1 a = N a + 1 = N + 1
17 16 oveq2d a = N A Y rm a + 1 = A Y rm N + 1
18 oveq2 a = N 2 A a = 2 A N
19 17 18 breq12d a = N A Y rm a + 1 2 A a A Y rm N + 1 2 A N
20 19 imbi2d a = N A 2 A Y rm a + 1 2 A a A 2 A Y rm N + 1 2 A N
21 1le1 1 1
22 0p1e1 0 + 1 = 1
23 22 oveq2i A Y rm 0 + 1 = A Y rm 1
24 rmy1 A 2 A Y rm 1 = 1
25 23 24 eqtrid A 2 A Y rm 0 + 1 = 1
26 2re 2
27 eluzelre A 2 A
28 remulcl 2 A 2 A
29 26 27 28 sylancr A 2 2 A
30 29 recnd A 2 2 A
31 30 exp0d A 2 2 A 0 = 1
32 25 31 breq12d A 2 A Y rm 0 + 1 2 A 0 1 1
33 21 32 mpbiri A 2 A Y rm 0 + 1 2 A 0
34 simpr b 0 A 2 A 2
35 nn0z b 0 b
36 35 adantr b 0 A 2 b
37 36 peano2zd b 0 A 2 b + 1
38 rmyluc2 A 2 b + 1 A Y rm b + 1 + 1 = 2 A A Y rm b + 1 A Y rm b + 1 - 1
39 34 37 38 syl2anc b 0 A 2 A Y rm b + 1 + 1 = 2 A A Y rm b + 1 A Y rm b + 1 - 1
40 rmxypos A 2 b 0 0 < A X rm b 0 A Y rm b
41 40 simprd A 2 b 0 0 A Y rm b
42 41 ancoms b 0 A 2 0 A Y rm b
43 nn0re b 0 b
44 43 adantr b 0 A 2 b
45 44 recnd b 0 A 2 b
46 ax-1cn 1
47 pncan b 1 b + 1 - 1 = b
48 45 46 47 sylancl b 0 A 2 b + 1 - 1 = b
49 48 oveq2d b 0 A 2 A Y rm b + 1 - 1 = A Y rm b
50 42 49 breqtrrd b 0 A 2 0 A Y rm b + 1 - 1
51 27 adantl b 0 A 2 A
52 26 51 28 sylancr b 0 A 2 2 A
53 frmy Y rm : 2 ×
54 53 fovcl A 2 b + 1 A Y rm b + 1
55 54 zred A 2 b + 1 A Y rm b + 1
56 34 37 55 syl2anc b 0 A 2 A Y rm b + 1
57 52 56 remulcld b 0 A 2 2 A A Y rm b + 1
58 53 fovcl A 2 b A Y rm b
59 58 zred A 2 b A Y rm b
60 34 36 59 syl2anc b 0 A 2 A Y rm b
61 49 60 eqeltrd b 0 A 2 A Y rm b + 1 - 1
62 57 61 subge02d b 0 A 2 0 A Y rm b + 1 - 1 2 A A Y rm b + 1 A Y rm b + 1 - 1 2 A A Y rm b + 1
63 50 62 mpbid b 0 A 2 2 A A Y rm b + 1 A Y rm b + 1 - 1 2 A A Y rm b + 1
64 39 63 eqbrtrd b 0 A 2 A Y rm b + 1 + 1 2 A A Y rm b + 1
65 64 3adant3 b 0 A 2 A Y rm b + 1 2 A b A Y rm b + 1 + 1 2 A A Y rm b + 1
66 simpl b 0 A 2 b 0
67 52 66 reexpcld b 0 A 2 2 A b
68 2nn 2
69 eluz2nn A 2 A
70 nnmulcl 2 A 2 A
71 68 69 70 sylancr A 2 2 A
72 71 nngt0d A 2 0 < 2 A
73 72 adantl b 0 A 2 0 < 2 A
74 lemul2 A Y rm b + 1 2 A b 2 A 0 < 2 A A Y rm b + 1 2 A b 2 A A Y rm b + 1 2 A 2 A b
75 56 67 52 73 74 syl112anc b 0 A 2 A Y rm b + 1 2 A b 2 A A Y rm b + 1 2 A 2 A b
76 75 biimp3a b 0 A 2 A Y rm b + 1 2 A b 2 A A Y rm b + 1 2 A 2 A b
77 52 recnd b 0 A 2 2 A
78 77 66 expp1d b 0 A 2 2 A b + 1 = 2 A b 2 A
79 67 recnd b 0 A 2 2 A b
80 79 77 mulcomd b 0 A 2 2 A b 2 A = 2 A 2 A b
81 78 80 eqtrd b 0 A 2 2 A b + 1 = 2 A 2 A b
82 81 3adant3 b 0 A 2 A Y rm b + 1 2 A b 2 A b + 1 = 2 A 2 A b
83 76 82 breqtrrd b 0 A 2 A Y rm b + 1 2 A b 2 A A Y rm b + 1 2 A b + 1
84 37 peano2zd b 0 A 2 b + 1 + 1
85 53 fovcl A 2 b + 1 + 1 A Y rm b + 1 + 1
86 85 zred A 2 b + 1 + 1 A Y rm b + 1 + 1
87 34 84 86 syl2anc b 0 A 2 A Y rm b + 1 + 1
88 peano2nn0 b 0 b + 1 0
89 88 adantr b 0 A 2 b + 1 0
90 52 89 reexpcld b 0 A 2 2 A b + 1
91 letr A Y rm b + 1 + 1 2 A A Y rm b + 1 2 A b + 1 A Y rm b + 1 + 1 2 A A Y rm b + 1 2 A A Y rm b + 1 2 A b + 1 A Y rm b + 1 + 1 2 A b + 1
92 87 57 90 91 syl3anc b 0 A 2 A Y rm b + 1 + 1 2 A A Y rm b + 1 2 A A Y rm b + 1 2 A b + 1 A Y rm b + 1 + 1 2 A b + 1
93 92 3adant3 b 0 A 2 A Y rm b + 1 2 A b A Y rm b + 1 + 1 2 A A Y rm b + 1 2 A A Y rm b + 1 2 A b + 1 A Y rm b + 1 + 1 2 A b + 1
94 65 83 93 mp2and b 0 A 2 A Y rm b + 1 2 A b A Y rm b + 1 + 1 2 A b + 1
95 94 3exp b 0 A 2 A Y rm b + 1 2 A b A Y rm b + 1 + 1 2 A b + 1
96 95 a2d b 0 A 2 A Y rm b + 1 2 A b A 2 A Y rm b + 1 + 1 2 A b + 1
97 5 10 15 20 33 96 nn0ind N 0 A 2 A Y rm N + 1 2 A N
98 97 impcom A 2 N 0 A Y rm N + 1 2 A N