Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
1
|
oveq2d |
|
3 |
|
oveq2 |
|
4 |
2 3
|
breq12d |
|
5 |
4
|
imbi2d |
|
6 |
|
oveq1 |
|
7 |
6
|
oveq2d |
|
8 |
|
oveq2 |
|
9 |
7 8
|
breq12d |
|
10 |
9
|
imbi2d |
|
11 |
|
oveq1 |
|
12 |
11
|
oveq2d |
|
13 |
|
oveq2 |
|
14 |
12 13
|
breq12d |
|
15 |
14
|
imbi2d |
|
16 |
|
oveq1 |
|
17 |
16
|
oveq2d |
|
18 |
|
oveq2 |
|
19 |
17 18
|
breq12d |
|
20 |
19
|
imbi2d |
|
21 |
|
1le1 |
|
22 |
|
0p1e1 |
|
23 |
22
|
oveq2i |
|
24 |
|
rmy1 |
|
25 |
23 24
|
eqtrid |
|
26 |
|
2re |
|
27 |
|
eluzelre |
|
28 |
|
remulcl |
|
29 |
26 27 28
|
sylancr |
|
30 |
29
|
recnd |
|
31 |
30
|
exp0d |
|
32 |
25 31
|
breq12d |
|
33 |
21 32
|
mpbiri |
|
34 |
|
simpr |
|
35 |
|
nn0z |
|
36 |
35
|
adantr |
|
37 |
36
|
peano2zd |
|
38 |
|
rmyluc2 |
|
39 |
34 37 38
|
syl2anc |
|
40 |
|
rmxypos |
|
41 |
40
|
simprd |
|
42 |
41
|
ancoms |
|
43 |
|
nn0re |
|
44 |
43
|
adantr |
|
45 |
44
|
recnd |
|
46 |
|
ax-1cn |
|
47 |
|
pncan |
|
48 |
45 46 47
|
sylancl |
|
49 |
48
|
oveq2d |
|
50 |
42 49
|
breqtrrd |
|
51 |
27
|
adantl |
|
52 |
26 51 28
|
sylancr |
|
53 |
|
frmy |
|
54 |
53
|
fovcl |
|
55 |
54
|
zred |
|
56 |
34 37 55
|
syl2anc |
|
57 |
52 56
|
remulcld |
|
58 |
53
|
fovcl |
|
59 |
58
|
zred |
|
60 |
34 36 59
|
syl2anc |
|
61 |
49 60
|
eqeltrd |
|
62 |
57 61
|
subge02d |
|
63 |
50 62
|
mpbid |
|
64 |
39 63
|
eqbrtrd |
|
65 |
64
|
3adant3 |
|
66 |
|
simpl |
|
67 |
52 66
|
reexpcld |
|
68 |
|
2nn |
|
69 |
|
eluz2nn |
|
70 |
|
nnmulcl |
|
71 |
68 69 70
|
sylancr |
|
72 |
71
|
nngt0d |
|
73 |
72
|
adantl |
|
74 |
|
lemul2 |
|
75 |
56 67 52 73 74
|
syl112anc |
|
76 |
75
|
biimp3a |
|
77 |
52
|
recnd |
|
78 |
77 66
|
expp1d |
|
79 |
67
|
recnd |
|
80 |
79 77
|
mulcomd |
|
81 |
78 80
|
eqtrd |
|
82 |
81
|
3adant3 |
|
83 |
76 82
|
breqtrrd |
|
84 |
37
|
peano2zd |
|
85 |
53
|
fovcl |
|
86 |
85
|
zred |
|
87 |
34 84 86
|
syl2anc |
|
88 |
|
peano2nn0 |
|
89 |
88
|
adantr |
|
90 |
52 89
|
reexpcld |
|
91 |
|
letr |
|
92 |
87 57 90 91
|
syl3anc |
|
93 |
92
|
3adant3 |
|
94 |
65 83 93
|
mp2and |
|
95 |
94
|
3exp |
|
96 |
95
|
a2d |
|
97 |
5 10 15 20 33 96
|
nn0ind |
|
98 |
97
|
impcom |
|