Metamath Proof Explorer


Theorem jm2.17c

Description: Second half of lemma 2.17 of JonesMatijasevic p. 696. (Contributed by Stefan O'Rear, 15-Oct-2014)

Ref Expression
Assertion jm2.17c A2NAYrmN+1+1<2AN+1

Proof

Step Hyp Ref Expression
1 2re 2
2 eluzelre A2A
3 2 adantr A2NA
4 remulcl 2A2A
5 1 3 4 sylancr A2N2A
6 nnz NN
7 6 adantl A2NN
8 7 peano2zd A2NN+1
9 frmy Yrm:2×
10 9 fovcl A2N+1AYrmN+1
11 10 zred A2N+1AYrmN+1
12 8 11 syldan A2NAYrmN+1
13 5 12 remulcld A2N2AAYrmN+1
14 nncn NN
15 14 adantl A2NN
16 ax-1cn 1
17 pncan N1N+1-1=N
18 15 16 17 sylancl A2NN+1-1=N
19 18 oveq2d A2NAYrmN+1-1=AYrmN
20 9 fovcl A2NAYrmN
21 20 zred A2NAYrmN
22 6 21 sylan2 A2NAYrmN
23 19 22 eqeltrd A2NAYrmN+1-1
24 13 23 resubcld A2N2AAYrmN+1AYrmN+1-1
25 nnnn0 NN0
26 25 adantl A2NN0
27 5 26 reexpcld A2N2AN
28 5 27 remulcld A2N2A2AN
29 rmy0 A2AYrm0=0
30 29 adantr A2NAYrm0=0
31 nngt0 N0<N
32 31 adantl A2N0<N
33 simpl A2NA2
34 0zd A2N0
35 ltrmy A20N0<NAYrm0<AYrmN
36 33 34 7 35 syl3anc A2N0<NAYrm0<AYrmN
37 32 36 mpbid A2NAYrm0<AYrmN
38 30 37 eqbrtrrd A2N0<AYrmN
39 38 19 breqtrrd A2N0<AYrmN+1-1
40 23 13 ltsubposd A2N0<AYrmN+1-12AAYrmN+1AYrmN+1-1<2AAYrmN+1
41 39 40 mpbid A2N2AAYrmN+1AYrmN+1-1<2AAYrmN+1
42 jm2.17b A2N0AYrmN+12AN
43 25 42 sylan2 A2NAYrmN+12AN
44 2nn 2
45 eluz2nn A2A
46 nnmulcl 2A2A
47 44 45 46 sylancr A22A
48 47 nngt0d A20<2A
49 48 adantr A2N0<2A
50 lemul2 AYrmN+12AN2A0<2AAYrmN+12AN2AAYrmN+12A2AN
51 12 27 5 49 50 syl112anc A2NAYrmN+12AN2AAYrmN+12A2AN
52 43 51 mpbid A2N2AAYrmN+12A2AN
53 24 13 28 41 52 ltletrd A2N2AAYrmN+1AYrmN+1-1<2A2AN
54 rmyluc2 A2N+1AYrmN+1+1=2AAYrmN+1AYrmN+1-1
55 8 54 syldan A2NAYrmN+1+1=2AAYrmN+1AYrmN+1-1
56 5 recnd A2N2A
57 56 26 expp1d A2N2AN+1=2AN2A
58 27 recnd A2N2AN
59 58 56 mulcomd A2N2AN2A=2A2AN
60 57 59 eqtrd A2N2AN+1=2A2AN
61 53 55 60 3brtr4d A2NAYrmN+1+1<2AN+1