| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acongrep |
|
| 2 |
1
|
ad2ant2l |
|
| 3 |
|
acongrep |
|
| 4 |
3
|
ad2ant2lr |
|
| 5 |
|
2z |
|
| 6 |
|
simpl1l |
|
| 7 |
|
nnz |
|
| 8 |
7
|
adantl |
|
| 9 |
6 8
|
syl |
|
| 10 |
|
zmulcl |
|
| 11 |
5 9 10
|
sylancr |
|
| 12 |
|
simplrl |
|
| 13 |
12
|
3ad2antl1 |
|
| 14 |
|
simpl3l |
|
| 15 |
14
|
elfzelzd |
|
| 16 |
|
simplrr |
|
| 17 |
16
|
3ad2antl1 |
|
| 18 |
|
simpl2r |
|
| 19 |
|
simpl2l |
|
| 20 |
|
simplll |
|
| 21 |
20
|
3ad2antl1 |
|
| 22 |
|
frmx |
|
| 23 |
22
|
fovcl |
|
| 24 |
23
|
nn0zd |
|
| 25 |
21 9 24
|
syl2anc |
|
| 26 |
19
|
elfzelzd |
|
| 27 |
|
frmy |
|
| 28 |
27
|
fovcl |
|
| 29 |
21 26 28
|
syl2anc |
|
| 30 |
27
|
fovcl |
|
| 31 |
21 17 30
|
syl2anc |
|
| 32 |
27
|
fovcl |
|
| 33 |
21 15 32
|
syl2anc |
|
| 34 |
27
|
fovcl |
|
| 35 |
21 13 34
|
syl2anc |
|
| 36 |
|
jm2.26a |
|
| 37 |
21 9 26 13 36
|
syl22anc |
|
| 38 |
18 37
|
mpd |
|
| 39 |
|
simpr |
|
| 40 |
|
acongtr |
|
| 41 |
25 29 35 31 38 39 40
|
syl222anc |
|
| 42 |
|
simpl3r |
|
| 43 |
|
acongsym |
|
| 44 |
11 15 17 42 43
|
syl31anc |
|
| 45 |
|
jm2.26a |
|
| 46 |
21 9 17 15 45
|
syl22anc |
|
| 47 |
44 46
|
mpd |
|
| 48 |
|
acongtr |
|
| 49 |
25 29 31 33 41 47 48
|
syl222anc |
|
| 50 |
|
jm2.26lem3 |
|
| 51 |
6 19 14 49 50
|
syl121anc |
|
| 52 |
|
id |
|
| 53 |
|
eqidd |
|
| 54 |
52 53
|
acongeq12d |
|
| 55 |
51 54
|
syl |
|
| 56 |
18 55
|
mpbid |
|
| 57 |
|
acongsym |
|
| 58 |
11 15 13 56 57
|
syl31anc |
|
| 59 |
|
acongtr |
|
| 60 |
11 13 15 17 58 42 59
|
syl222anc |
|
| 61 |
60
|
3exp1 |
|
| 62 |
61
|
expd |
|
| 63 |
62
|
rexlimdv |
|
| 64 |
4 63
|
mpd |
|
| 65 |
64
|
expd |
|
| 66 |
65
|
rexlimdv |
|
| 67 |
2 66
|
mpd |
|
| 68 |
|
jm2.26a |
|
| 69 |
7 68
|
sylanl2 |
|
| 70 |
67 69
|
impbid |
|