| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|
| 2 |
|
simplr |
|
| 3 |
|
zmulcl |
|
| 4 |
1 2 3
|
sylancr |
|
| 5 |
|
zsubcl |
|
| 6 |
5
|
adantl |
|
| 7 |
|
divides |
|
| 8 |
4 6 7
|
syl2anc |
|
| 9 |
|
simplll |
|
| 10 |
|
simplrr |
|
| 11 |
|
simpllr |
|
| 12 |
|
simpr |
|
| 13 |
|
jm2.25 |
|
| 14 |
9 10 11 12 13
|
syl121anc |
|
| 15 |
14
|
adantr |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
|
zcn |
|
| 19 |
|
zcn |
|
| 20 |
|
pncan3 |
|
| 21 |
18 19 20
|
syl2anr |
|
| 22 |
21
|
ad2antlr |
|
| 23 |
22
|
oveq2d |
|
| 24 |
17 23
|
sylan9eqr |
|
| 25 |
|
eqidd |
|
| 26 |
24 25
|
acongeq12d |
|
| 27 |
15 26
|
mpbid |
|
| 28 |
27
|
rexlimdva2 |
|
| 29 |
8 28
|
sylbid |
|
| 30 |
|
simprl |
|
| 31 |
|
znegcl |
|
| 32 |
31
|
ad2antll |
|
| 33 |
30 32
|
zsubcld |
|
| 34 |
|
divides |
|
| 35 |
4 33 34
|
syl2anc |
|
| 36 |
|
frmx |
|
| 37 |
36
|
fovcl |
|
| 38 |
37
|
nn0zd |
|
| 39 |
9 11 38
|
syl2anc |
|
| 40 |
|
simplrl |
|
| 41 |
|
frmy |
|
| 42 |
41
|
fovcl |
|
| 43 |
9 40 42
|
syl2anc |
|
| 44 |
41
|
fovcl |
|
| 45 |
9 10 44
|
syl2anc |
|
| 46 |
39 43 45
|
3jca |
|
| 47 |
46
|
adantr |
|
| 48 |
32
|
adantr |
|
| 49 |
|
jm2.25 |
|
| 50 |
9 48 11 12 49
|
syl121anc |
|
| 51 |
50
|
adantr |
|
| 52 |
|
oveq2 |
|
| 53 |
52
|
oveq2d |
|
| 54 |
18
|
negcld |
|
| 55 |
|
pncan3 |
|
| 56 |
54 19 55
|
syl2anr |
|
| 57 |
56
|
ad2antlr |
|
| 58 |
57
|
oveq2d |
|
| 59 |
53 58
|
sylan9eqr |
|
| 60 |
|
rmyneg |
|
| 61 |
9 10 60
|
syl2anc |
|
| 62 |
61
|
adantr |
|
| 63 |
59 62
|
acongeq12d |
|
| 64 |
51 63
|
mpbid |
|
| 65 |
|
acongneg2 |
|
| 66 |
47 64 65
|
syl2anc |
|
| 67 |
66
|
rexlimdva2 |
|
| 68 |
35 67
|
sylbid |
|
| 69 |
29 68
|
jaod |
|