Metamath Proof Explorer


Theorem jm2.26a

Description: Lemma for jm2.26 . Reverse direction is required to prove forward direction, so do it separately. Induction on difference between K and M, together with the addition formula fact that adding 2N only inverts sign. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion jm2.26a A2NKM2 NKM2 NK- MAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM

Proof

Step Hyp Ref Expression
1 2z 2
2 simplr A2NKMN
3 zmulcl 2N2 N
4 1 2 3 sylancr A2NKM2 N
5 zsubcl KMKM
6 5 adantl A2NKMKM
7 divides 2 NKM2 NKMaa2 N=KM
8 4 6 7 syl2anc A2NKM2 NKMaa2 N=KM
9 simplll A2NKMaA2
10 simplrr A2NKMaM
11 simpllr A2NKMaN
12 simpr A2NKMaa
13 jm2.25 A2MNaAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmM
14 9 10 11 12 13 syl121anc A2NKMaAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmM
15 14 adantr A2NKMaa2 N=KMAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmM
16 oveq2 a2 N=KMM+a2 N=M+K-M
17 16 oveq2d a2 N=KMAYrmM+a2 N=AYrmM+K-M
18 zcn MM
19 zcn KK
20 pncan3 MKM+K-M=K
21 18 19 20 syl2anr KMM+K-M=K
22 21 ad2antlr A2NKMaM+K-M=K
23 22 oveq2d A2NKMaAYrmM+K-M=AYrmK
24 17 23 sylan9eqr A2NKMaa2 N=KMAYrmM+a2 N=AYrmK
25 eqidd A2NKMaa2 N=KMAYrmM=AYrmM
26 24 25 acongeq12d A2NKMaa2 N=KMAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmMAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM
27 15 26 mpbid A2NKMaa2 N=KMAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM
28 27 rexlimdva2 A2NKMaa2 N=KMAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM
29 8 28 sylbid A2NKM2 NKMAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM
30 simprl A2NKMK
31 znegcl MM
32 31 ad2antll A2NKMM
33 30 32 zsubcld A2NKMK- M
34 divides 2 NK- M2 NK- Maa2 N=K- M
35 4 33 34 syl2anc A2NKM2 NK- Maa2 N=K- M
36 frmx Xrm:2×0
37 36 fovcl A2NAXrmN0
38 37 nn0zd A2NAXrmN
39 9 11 38 syl2anc A2NKMaAXrmN
40 simplrl A2NKMaK
41 frmy Yrm:2×
42 41 fovcl A2KAYrmK
43 9 40 42 syl2anc A2NKMaAYrmK
44 41 fovcl A2MAYrmM
45 9 10 44 syl2anc A2NKMaAYrmM
46 39 43 45 3jca A2NKMaAXrmNAYrmKAYrmM
47 46 adantr A2NKMaa2 N=K- MAXrmNAYrmKAYrmM
48 32 adantr A2NKMaM
49 jm2.25 A2MNaAXrmNAYrm-M+a2 NAYrm- MAXrmNAYrm-M+a2 NAYrm- M
50 9 48 11 12 49 syl121anc A2NKMaAXrmNAYrm-M+a2 NAYrm- MAXrmNAYrm-M+a2 NAYrm- M
51 50 adantr A2NKMaa2 N=K- MAXrmNAYrm-M+a2 NAYrm- MAXrmNAYrm-M+a2 NAYrm- M
52 oveq2 a2 N=K- M-M+a2 N=- M+K-- M
53 52 oveq2d a2 N=K- MAYrm-M+a2 N=AYrm- M+K-- M
54 18 negcld MM
55 pncan3 MK- M+K-- M=K
56 54 19 55 syl2anr KM- M+K-- M=K
57 56 ad2antlr A2NKMa- M+K-- M=K
58 57 oveq2d A2NKMaAYrm- M+K-- M=AYrmK
59 53 58 sylan9eqr A2NKMaa2 N=K- MAYrm-M+a2 N=AYrmK
60 rmyneg A2MAYrm- M=AYrmM
61 9 10 60 syl2anc A2NKMaAYrm- M=AYrmM
62 61 adantr A2NKMaa2 N=K- MAYrm- M=AYrmM
63 59 62 acongeq12d A2NKMaa2 N=K- MAXrmNAYrm-M+a2 NAYrm- MAXrmNAYrm-M+a2 NAYrm- MAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM
64 51 63 mpbid A2NKMaa2 N=K- MAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM
65 acongneg2 AXrmNAYrmKAYrmMAXrmNAYrmKAYrmMAXrmNAYrmKAYrmMAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM
66 47 64 65 syl2anc A2NKMaa2 N=K- MAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM
67 66 rexlimdva2 A2NKMaa2 N=K- MAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM
68 35 67 sylbid A2NKM2 NK- MAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM
69 29 68 jaod A2NKM2 NKM2 NK- MAXrmNAYrmKAYrmMAXrmNAYrmKAYrmM