Description: Lemma for jm2.26 . Reverse direction is required to prove forward direction, so do it separately. Induction on difference between K and M, together with the addition formula fact that adding 2N only inverts sign. (Contributed by Stefan O'Rear, 2-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | jm2.26a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z | |
|
2 | simplr | |
|
3 | zmulcl | |
|
4 | 1 2 3 | sylancr | |
5 | zsubcl | |
|
6 | 5 | adantl | |
7 | divides | |
|
8 | 4 6 7 | syl2anc | |
9 | simplll | |
|
10 | simplrr | |
|
11 | simpllr | |
|
12 | simpr | |
|
13 | jm2.25 | |
|
14 | 9 10 11 12 13 | syl121anc | |
15 | 14 | adantr | |
16 | oveq2 | |
|
17 | 16 | oveq2d | |
18 | zcn | |
|
19 | zcn | |
|
20 | pncan3 | |
|
21 | 18 19 20 | syl2anr | |
22 | 21 | ad2antlr | |
23 | 22 | oveq2d | |
24 | 17 23 | sylan9eqr | |
25 | eqidd | |
|
26 | 24 25 | acongeq12d | |
27 | 15 26 | mpbid | |
28 | 27 | rexlimdva2 | |
29 | 8 28 | sylbid | |
30 | simprl | |
|
31 | znegcl | |
|
32 | 31 | ad2antll | |
33 | 30 32 | zsubcld | |
34 | divides | |
|
35 | 4 33 34 | syl2anc | |
36 | frmx | |
|
37 | 36 | fovcl | |
38 | 37 | nn0zd | |
39 | 9 11 38 | syl2anc | |
40 | simplrl | |
|
41 | frmy | |
|
42 | 41 | fovcl | |
43 | 9 40 42 | syl2anc | |
44 | 41 | fovcl | |
45 | 9 10 44 | syl2anc | |
46 | 39 43 45 | 3jca | |
47 | 46 | adantr | |
48 | 32 | adantr | |
49 | jm2.25 | |
|
50 | 9 48 11 12 49 | syl121anc | |
51 | 50 | adantr | |
52 | oveq2 | |
|
53 | 52 | oveq2d | |
54 | 18 | negcld | |
55 | pncan3 | |
|
56 | 54 19 55 | syl2anr | |
57 | 56 | ad2antlr | |
58 | 57 | oveq2d | |
59 | 53 58 | sylan9eqr | |
60 | rmyneg | |
|
61 | 9 10 60 | syl2anc | |
62 | 61 | adantr | |
63 | 59 62 | acongeq12d | |
64 | 51 63 | mpbid | |
65 | acongneg2 | |
|
66 | 47 64 65 | syl2anc | |
67 | 66 | rexlimdva2 | |
68 | 35 67 | sylbid | |
69 | 29 68 | jaod | |