| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|
| 2 |
|
simpl2 |
|
| 3 |
|
simpl3 |
|
| 4 |
|
simpr |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
jm2.27c |
|
| 14 |
13
|
simpld |
|
| 15 |
14
|
simpld |
|
| 16 |
14
|
simprd |
|
| 17 |
13
|
simprd |
|
| 18 |
|
oveq1 |
|
| 19 |
18
|
oveq1d |
|
| 20 |
19
|
eqeq2d |
|
| 21 |
20
|
3anbi2d |
|
| 22 |
21
|
anbi2d |
|
| 23 |
22
|
anbi1d |
|
| 24 |
23
|
rspcev |
|
| 25 |
17 24
|
syl |
|
| 26 |
|
eleq1 |
|
| 27 |
26
|
3anbi3d |
|
| 28 |
|
oveq1 |
|
| 29 |
28
|
oveq1d |
|
| 30 |
29
|
oveq1d |
|
| 31 |
30
|
oveq2d |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
|
oveq1 |
|
| 34 |
33
|
breq2d |
|
| 35 |
32 34
|
3anbi13d |
|
| 36 |
27 35
|
anbi12d |
|
| 37 |
|
oveq1 |
|
| 38 |
37
|
breq2d |
|
| 39 |
38
|
anbi1d |
|
| 40 |
39
|
anbi1d |
|
| 41 |
36 40
|
anbi12d |
|
| 42 |
41
|
rexbidv |
|
| 43 |
|
oveq1 |
|
| 44 |
43
|
oveq2d |
|
| 45 |
44
|
oveq2d |
|
| 46 |
45
|
eqeq1d |
|
| 47 |
46
|
3anbi1d |
|
| 48 |
47
|
anbi2d |
|
| 49 |
|
oveq1 |
|
| 50 |
49
|
breq2d |
|
| 51 |
50
|
anbi2d |
|
| 52 |
|
oveq1 |
|
| 53 |
52
|
breq2d |
|
| 54 |
53
|
anbi1d |
|
| 55 |
51 54
|
anbi12d |
|
| 56 |
48 55
|
anbi12d |
|
| 57 |
56
|
rexbidv |
|
| 58 |
|
oveq1 |
|
| 59 |
58
|
oveq1d |
|
| 60 |
59
|
eqeq1d |
|
| 61 |
60
|
3anbi1d |
|
| 62 |
61
|
anbi2d |
|
| 63 |
62
|
anbi1d |
|
| 64 |
63
|
rexbidv |
|
| 65 |
42 57 64
|
rspc3ev |
|
| 66 |
16 25 65
|
syl2anc |
|
| 67 |
|
oveq1 |
|
| 68 |
67
|
oveq1d |
|
| 69 |
68
|
eqeq1d |
|
| 70 |
69
|
3anbi1d |
|
| 71 |
70
|
anbi1d |
|
| 72 |
71
|
anbi1d |
|
| 73 |
72
|
2rexbidv |
|
| 74 |
73
|
2rexbidv |
|
| 75 |
|
oveq1 |
|
| 76 |
75
|
oveq2d |
|
| 77 |
76
|
oveq2d |
|
| 78 |
77
|
eqeq1d |
|
| 79 |
78
|
3anbi2d |
|
| 80 |
|
eqeq1 |
|
| 81 |
80
|
3anbi2d |
|
| 82 |
79 81
|
anbi12d |
|
| 83 |
82
|
anbi1d |
|
| 84 |
83
|
2rexbidv |
|
| 85 |
84
|
2rexbidv |
|
| 86 |
|
oveq1 |
|
| 87 |
86
|
oveq1d |
|
| 88 |
87
|
eqeq1d |
|
| 89 |
88
|
3anbi2d |
|
| 90 |
|
breq1 |
|
| 91 |
90
|
3anbi3d |
|
| 92 |
89 91
|
anbi12d |
|
| 93 |
|
breq1 |
|
| 94 |
93
|
anbi2d |
|
| 95 |
94
|
anbi1d |
|
| 96 |
92 95
|
anbi12d |
|
| 97 |
96
|
2rexbidv |
|
| 98 |
97
|
2rexbidv |
|
| 99 |
74 85 98
|
rspc3ev |
|
| 100 |
15 66 99
|
syl2anc |
|
| 101 |
100
|
ex |
|
| 102 |
|
simpll1 |
|
| 103 |
102
|
ad3antrrr |
|
| 104 |
|
simpll2 |
|
| 105 |
104
|
ad3antrrr |
|
| 106 |
|
simpll3 |
|
| 107 |
106
|
ad3antrrr |
|
| 108 |
|
simplrl |
|
| 109 |
108
|
ad3antrrr |
|
| 110 |
|
simplrr |
|
| 111 |
110
|
ad3antrrr |
|
| 112 |
|
simprl |
|
| 113 |
112
|
ad3antrrr |
|
| 114 |
|
simprr |
|
| 115 |
114
|
ad3antrrr |
|
| 116 |
|
simprl |
|
| 117 |
116
|
ad2antrr |
|
| 118 |
|
simprr |
|
| 119 |
118
|
ad2antrr |
|
| 120 |
|
simplr |
|
| 121 |
|
simp2l1 |
|
| 122 |
121
|
3expb |
|
| 123 |
|
simp2l2 |
|
| 124 |
123
|
3expb |
|
| 125 |
|
simp2l3 |
|
| 126 |
125
|
3expb |
|
| 127 |
|
simp2r1 |
|
| 128 |
127
|
3expb |
|
| 129 |
|
simp2r2 |
|
| 130 |
129
|
3expb |
|
| 131 |
|
simp2r3 |
|
| 132 |
131
|
3expb |
|
| 133 |
|
simp3ll |
|
| 134 |
133
|
3expb |
|
| 135 |
|
simp3lr |
|
| 136 |
135
|
3expb |
|
| 137 |
|
simp3rl |
|
| 138 |
137
|
3expb |
|
| 139 |
|
simp3rr |
|
| 140 |
139
|
3expb |
|
| 141 |
103 105 107 109 111 113 115 117 119 120 122 124 126 128 130 132 134 136 138 140
|
jm2.27b |
|
| 142 |
141
|
rexlimdva2 |
|
| 143 |
142
|
rexlimdvva |
|
| 144 |
143
|
rexlimdvva |
|
| 145 |
144
|
rexlimdvva |
|
| 146 |
101 145
|
impbid |
|