Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|
2 |
|
simpl2 |
|
3 |
|
simpl3 |
|
4 |
|
simpr |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
jm2.27c |
|
14 |
13
|
simpld |
|
15 |
14
|
simpld |
|
16 |
14
|
simprd |
|
17 |
13
|
simprd |
|
18 |
|
oveq1 |
|
19 |
18
|
oveq1d |
|
20 |
19
|
eqeq2d |
|
21 |
20
|
3anbi2d |
|
22 |
21
|
anbi2d |
|
23 |
22
|
anbi1d |
|
24 |
23
|
rspcev |
|
25 |
17 24
|
syl |
|
26 |
|
eleq1 |
|
27 |
26
|
3anbi3d |
|
28 |
|
oveq1 |
|
29 |
28
|
oveq1d |
|
30 |
29
|
oveq1d |
|
31 |
30
|
oveq2d |
|
32 |
31
|
eqeq1d |
|
33 |
|
oveq1 |
|
34 |
33
|
breq2d |
|
35 |
32 34
|
3anbi13d |
|
36 |
27 35
|
anbi12d |
|
37 |
|
oveq1 |
|
38 |
37
|
breq2d |
|
39 |
38
|
anbi1d |
|
40 |
39
|
anbi1d |
|
41 |
36 40
|
anbi12d |
|
42 |
41
|
rexbidv |
|
43 |
|
oveq1 |
|
44 |
43
|
oveq2d |
|
45 |
44
|
oveq2d |
|
46 |
45
|
eqeq1d |
|
47 |
46
|
3anbi1d |
|
48 |
47
|
anbi2d |
|
49 |
|
oveq1 |
|
50 |
49
|
breq2d |
|
51 |
50
|
anbi2d |
|
52 |
|
oveq1 |
|
53 |
52
|
breq2d |
|
54 |
53
|
anbi1d |
|
55 |
51 54
|
anbi12d |
|
56 |
48 55
|
anbi12d |
|
57 |
56
|
rexbidv |
|
58 |
|
oveq1 |
|
59 |
58
|
oveq1d |
|
60 |
59
|
eqeq1d |
|
61 |
60
|
3anbi1d |
|
62 |
61
|
anbi2d |
|
63 |
62
|
anbi1d |
|
64 |
63
|
rexbidv |
|
65 |
42 57 64
|
rspc3ev |
|
66 |
16 25 65
|
syl2anc |
|
67 |
|
oveq1 |
|
68 |
67
|
oveq1d |
|
69 |
68
|
eqeq1d |
|
70 |
69
|
3anbi1d |
|
71 |
70
|
anbi1d |
|
72 |
71
|
anbi1d |
|
73 |
72
|
2rexbidv |
|
74 |
73
|
2rexbidv |
|
75 |
|
oveq1 |
|
76 |
75
|
oveq2d |
|
77 |
76
|
oveq2d |
|
78 |
77
|
eqeq1d |
|
79 |
78
|
3anbi2d |
|
80 |
|
eqeq1 |
|
81 |
80
|
3anbi2d |
|
82 |
79 81
|
anbi12d |
|
83 |
82
|
anbi1d |
|
84 |
83
|
2rexbidv |
|
85 |
84
|
2rexbidv |
|
86 |
|
oveq1 |
|
87 |
86
|
oveq1d |
|
88 |
87
|
eqeq1d |
|
89 |
88
|
3anbi2d |
|
90 |
|
breq1 |
|
91 |
90
|
3anbi3d |
|
92 |
89 91
|
anbi12d |
|
93 |
|
breq1 |
|
94 |
93
|
anbi2d |
|
95 |
94
|
anbi1d |
|
96 |
92 95
|
anbi12d |
|
97 |
96
|
2rexbidv |
|
98 |
97
|
2rexbidv |
|
99 |
74 85 98
|
rspc3ev |
|
100 |
15 66 99
|
syl2anc |
|
101 |
100
|
ex |
|
102 |
|
simpll1 |
|
103 |
102
|
ad3antrrr |
|
104 |
|
simpll2 |
|
105 |
104
|
ad3antrrr |
|
106 |
|
simpll3 |
|
107 |
106
|
ad3antrrr |
|
108 |
|
simplrl |
|
109 |
108
|
ad3antrrr |
|
110 |
|
simplrr |
|
111 |
110
|
ad3antrrr |
|
112 |
|
simprl |
|
113 |
112
|
ad3antrrr |
|
114 |
|
simprr |
|
115 |
114
|
ad3antrrr |
|
116 |
|
simprl |
|
117 |
116
|
ad2antrr |
|
118 |
|
simprr |
|
119 |
118
|
ad2antrr |
|
120 |
|
simplr |
|
121 |
|
simp2l1 |
|
122 |
121
|
3expb |
|
123 |
|
simp2l2 |
|
124 |
123
|
3expb |
|
125 |
|
simp2l3 |
|
126 |
125
|
3expb |
|
127 |
|
simp2r1 |
|
128 |
127
|
3expb |
|
129 |
|
simp2r2 |
|
130 |
129
|
3expb |
|
131 |
|
simp2r3 |
|
132 |
131
|
3expb |
|
133 |
|
simp3ll |
|
134 |
133
|
3expb |
|
135 |
|
simp3lr |
|
136 |
135
|
3expb |
|
137 |
|
simp3rl |
|
138 |
137
|
3expb |
|
139 |
|
simp3rr |
|
140 |
139
|
3expb |
|
141 |
103 105 107 109 111 113 115 117 119 120 122 124 126 128 130 132 134 136 138 140
|
jm2.27b |
|
142 |
141
|
rexlimdva2 |
|
143 |
142
|
rexlimdvva |
|
144 |
143
|
rexlimdvva |
|
145 |
144
|
rexlimdvva |
|
146 |
101 145
|
impbid |
|