Metamath Proof Explorer


Theorem kgen2ss

Description: The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion kgen2ss JTopOnXKTopOnXJK𝑘GenJ𝑘GenK

Proof

Step Hyp Ref Expression
1 simp1 JTopOnXKTopOnXJKJTopOnX
2 elpwi k𝒫XkX
3 resttopon JTopOnXkXJ𝑡kTopOnk
4 1 2 3 syl2an JTopOnXKTopOnXJKk𝒫XJ𝑡kTopOnk
5 simp2 JTopOnXKTopOnXJKKTopOnX
6 resttopon KTopOnXkXK𝑡kTopOnk
7 5 2 6 syl2an JTopOnXKTopOnXJKk𝒫XK𝑡kTopOnk
8 toponuni K𝑡kTopOnkk=K𝑡k
9 7 8 syl JTopOnXKTopOnXJKk𝒫Xk=K𝑡k
10 9 fveq2d JTopOnXKTopOnXJKk𝒫XTopOnk=TopOnK𝑡k
11 4 10 eleqtrd JTopOnXKTopOnXJKk𝒫XJ𝑡kTopOnK𝑡k
12 simpl2 JTopOnXKTopOnXJKk𝒫XKTopOnX
13 topontop KTopOnXKTop
14 12 13 syl JTopOnXKTopOnXJKk𝒫XKTop
15 simpl3 JTopOnXKTopOnXJKk𝒫XJK
16 ssrest KTopJKJ𝑡kK𝑡k
17 14 15 16 syl2anc JTopOnXKTopOnXJKk𝒫XJ𝑡kK𝑡k
18 eqid K𝑡k=K𝑡k
19 18 sscmp J𝑡kTopOnK𝑡kK𝑡kCompJ𝑡kK𝑡kJ𝑡kComp
20 19 3com23 J𝑡kTopOnK𝑡kJ𝑡kK𝑡kK𝑡kCompJ𝑡kComp
21 20 3expia J𝑡kTopOnK𝑡kJ𝑡kK𝑡kK𝑡kCompJ𝑡kComp
22 11 17 21 syl2anc JTopOnXKTopOnXJKk𝒫XK𝑡kCompJ𝑡kComp
23 17 sseld JTopOnXKTopOnXJKk𝒫XxkJ𝑡kxkK𝑡k
24 22 23 imim12d JTopOnXKTopOnXJKk𝒫XJ𝑡kCompxkJ𝑡kK𝑡kCompxkK𝑡k
25 24 ralimdva JTopOnXKTopOnXJKk𝒫XJ𝑡kCompxkJ𝑡kk𝒫XK𝑡kCompxkK𝑡k
26 25 anim2d JTopOnXKTopOnXJKxXk𝒫XJ𝑡kCompxkJ𝑡kxXk𝒫XK𝑡kCompxkK𝑡k
27 elkgen JTopOnXx𝑘GenJxXk𝒫XJ𝑡kCompxkJ𝑡k
28 27 3ad2ant1 JTopOnXKTopOnXJKx𝑘GenJxXk𝒫XJ𝑡kCompxkJ𝑡k
29 elkgen KTopOnXx𝑘GenKxXk𝒫XK𝑡kCompxkK𝑡k
30 29 3ad2ant2 JTopOnXKTopOnXJKx𝑘GenKxXk𝒫XK𝑡kCompxkK𝑡k
31 26 28 30 3imtr4d JTopOnXKTopOnXJKx𝑘GenJx𝑘GenK
32 31 ssrdv JTopOnXKTopOnXJK𝑘GenJ𝑘GenK