Description: If two structures have the same components (properties), they have the same set of bases. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015) (Revised by AV, 24-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lbspropd.b1 | |
|
lbspropd.b2 | |
||
lbspropd.w | |
||
lbspropd.p | |
||
lbspropd.s1 | |
||
lbspropd.s2 | |
||
lbspropd.f | |
||
lbspropd.g | |
||
lbspropd.p1 | |
||
lbspropd.p2 | |
||
lbspropd.a | |
||
lbspropd.v1 | |
||
lbspropd.v2 | |
||
Assertion | lbspropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbspropd.b1 | |
|
2 | lbspropd.b2 | |
|
3 | lbspropd.w | |
|
4 | lbspropd.p | |
|
5 | lbspropd.s1 | |
|
6 | lbspropd.s2 | |
|
7 | lbspropd.f | |
|
8 | lbspropd.g | |
|
9 | lbspropd.p1 | |
|
10 | lbspropd.p2 | |
|
11 | lbspropd.a | |
|
12 | lbspropd.v1 | |
|
13 | lbspropd.v2 | |
|
14 | simplll | |
|
15 | eldifi | |
|
16 | 15 | adantl | |
17 | simpr | |
|
18 | 17 | sselda | |
19 | 18 | adantr | |
20 | 6 | oveqrspc2v | |
21 | 14 16 19 20 | syl12anc | |
22 | 7 | fveq2i | |
23 | 9 22 | eqtrdi | |
24 | 8 | fveq2i | |
25 | 10 24 | eqtrdi | |
26 | 1 2 3 4 5 6 23 25 12 13 | lsppropd | |
27 | 14 26 | syl | |
28 | 27 | fveq1d | |
29 | 21 28 | eleq12d | |
30 | 29 | notbid | |
31 | 30 | ralbidva | |
32 | 9 | ad2antrr | |
33 | 32 | difeq1d | |
34 | 33 | raleqdv | |
35 | 10 | ad2antrr | |
36 | 9 10 11 | grpidpropd | |
37 | 36 | ad2antrr | |
38 | 37 | sneqd | |
39 | 35 38 | difeq12d | |
40 | 39 | raleqdv | |
41 | 31 34 40 | 3bitr3d | |
42 | 41 | ralbidva | |
43 | 42 | anbi2d | |
44 | 43 | pm5.32da | |
45 | 1 | sseq2d | |
46 | 45 | anbi1d | |
47 | 2 | sseq2d | |
48 | 26 | fveq1d | |
49 | 1 2 | eqtr3d | |
50 | 48 49 | eqeq12d | |
51 | 50 | anbi1d | |
52 | 47 51 | anbi12d | |
53 | 44 46 52 | 3bitr3d | |
54 | 3anass | |
|
55 | 3anass | |
|
56 | 53 54 55 | 3bitr4g | |
57 | eqid | |
|
58 | eqid | |
|
59 | eqid | |
|
60 | eqid | |
|
61 | eqid | |
|
62 | eqid | |
|
63 | 57 7 58 59 60 61 62 | islbs | |
64 | 12 63 | syl | |
65 | eqid | |
|
66 | eqid | |
|
67 | eqid | |
|
68 | eqid | |
|
69 | eqid | |
|
70 | eqid | |
|
71 | 65 8 66 67 68 69 70 | islbs | |
72 | 13 71 | syl | |
73 | 56 64 72 | 3bitr4d | |
74 | 73 | eqrdv | |