Metamath Proof Explorer


Theorem lbspropd

Description: If two structures have the same components (properties), they have the same set of bases. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015) (Revised by AV, 24-Apr-2024)

Ref Expression
Hypotheses lbspropd.b1 φB=BaseK
lbspropd.b2 φB=BaseL
lbspropd.w φBW
lbspropd.p φxWyWx+Ky=x+Ly
lbspropd.s1 φxPyBxKyW
lbspropd.s2 φxPyBxKy=xLy
lbspropd.f F=ScalarK
lbspropd.g G=ScalarL
lbspropd.p1 φP=BaseF
lbspropd.p2 φP=BaseG
lbspropd.a φxPyPx+Fy=x+Gy
lbspropd.v1 φKX
lbspropd.v2 φLY
Assertion lbspropd φLBasisK=LBasisL

Proof

Step Hyp Ref Expression
1 lbspropd.b1 φB=BaseK
2 lbspropd.b2 φB=BaseL
3 lbspropd.w φBW
4 lbspropd.p φxWyWx+Ky=x+Ly
5 lbspropd.s1 φxPyBxKyW
6 lbspropd.s2 φxPyBxKy=xLy
7 lbspropd.f F=ScalarK
8 lbspropd.g G=ScalarL
9 lbspropd.p1 φP=BaseF
10 lbspropd.p2 φP=BaseG
11 lbspropd.a φxPyPx+Fy=x+Gy
12 lbspropd.v1 φKX
13 lbspropd.v2 φLY
14 simplll φzBuzvP0Fφ
15 eldifi vP0FvP
16 15 adantl φzBuzvP0FvP
17 simpr φzBzB
18 17 sselda φzBuzuB
19 18 adantr φzBuzvP0FuB
20 6 oveqrspc2v φvPuBvKu=vLu
21 14 16 19 20 syl12anc φzBuzvP0FvKu=vLu
22 7 fveq2i BaseF=BaseScalarK
23 9 22 eqtrdi φP=BaseScalarK
24 8 fveq2i BaseG=BaseScalarL
25 10 24 eqtrdi φP=BaseScalarL
26 1 2 3 4 5 6 23 25 12 13 lsppropd φLSpanK=LSpanL
27 14 26 syl φzBuzvP0FLSpanK=LSpanL
28 27 fveq1d φzBuzvP0FLSpanKzu=LSpanLzu
29 21 28 eleq12d φzBuzvP0FvKuLSpanKzuvLuLSpanLzu
30 29 notbid φzBuzvP0F¬vKuLSpanKzu¬vLuLSpanLzu
31 30 ralbidva φzBuzvP0F¬vKuLSpanKzuvP0F¬vLuLSpanLzu
32 9 ad2antrr φzBuzP=BaseF
33 32 difeq1d φzBuzP0F=BaseF0F
34 33 raleqdv φzBuzvP0F¬vKuLSpanKzuvBaseF0F¬vKuLSpanKzu
35 10 ad2antrr φzBuzP=BaseG
36 9 10 11 grpidpropd φ0F=0G
37 36 ad2antrr φzBuz0F=0G
38 37 sneqd φzBuz0F=0G
39 35 38 difeq12d φzBuzP0F=BaseG0G
40 39 raleqdv φzBuzvP0F¬vLuLSpanLzuvBaseG0G¬vLuLSpanLzu
41 31 34 40 3bitr3d φzBuzvBaseF0F¬vKuLSpanKzuvBaseG0G¬vLuLSpanLzu
42 41 ralbidva φzBuzvBaseF0F¬vKuLSpanKzuuzvBaseG0G¬vLuLSpanLzu
43 42 anbi2d φzBLSpanKz=BaseKuzvBaseF0F¬vKuLSpanKzuLSpanKz=BaseKuzvBaseG0G¬vLuLSpanLzu
44 43 pm5.32da φzBLSpanKz=BaseKuzvBaseF0F¬vKuLSpanKzuzBLSpanKz=BaseKuzvBaseG0G¬vLuLSpanLzu
45 1 sseq2d φzBzBaseK
46 45 anbi1d φzBLSpanKz=BaseKuzvBaseF0F¬vKuLSpanKzuzBaseKLSpanKz=BaseKuzvBaseF0F¬vKuLSpanKzu
47 2 sseq2d φzBzBaseL
48 26 fveq1d φLSpanKz=LSpanLz
49 1 2 eqtr3d φBaseK=BaseL
50 48 49 eqeq12d φLSpanKz=BaseKLSpanLz=BaseL
51 50 anbi1d φLSpanKz=BaseKuzvBaseG0G¬vLuLSpanLzuLSpanLz=BaseLuzvBaseG0G¬vLuLSpanLzu
52 47 51 anbi12d φzBLSpanKz=BaseKuzvBaseG0G¬vLuLSpanLzuzBaseLLSpanLz=BaseLuzvBaseG0G¬vLuLSpanLzu
53 44 46 52 3bitr3d φzBaseKLSpanKz=BaseKuzvBaseF0F¬vKuLSpanKzuzBaseLLSpanLz=BaseLuzvBaseG0G¬vLuLSpanLzu
54 3anass zBaseKLSpanKz=BaseKuzvBaseF0F¬vKuLSpanKzuzBaseKLSpanKz=BaseKuzvBaseF0F¬vKuLSpanKzu
55 3anass zBaseLLSpanLz=BaseLuzvBaseG0G¬vLuLSpanLzuzBaseLLSpanLz=BaseLuzvBaseG0G¬vLuLSpanLzu
56 53 54 55 3bitr4g φzBaseKLSpanKz=BaseKuzvBaseF0F¬vKuLSpanKzuzBaseLLSpanLz=BaseLuzvBaseG0G¬vLuLSpanLzu
57 eqid BaseK=BaseK
58 eqid K=K
59 eqid BaseF=BaseF
60 eqid LBasisK=LBasisK
61 eqid LSpanK=LSpanK
62 eqid 0F=0F
63 57 7 58 59 60 61 62 islbs KXzLBasisKzBaseKLSpanKz=BaseKuzvBaseF0F¬vKuLSpanKzu
64 12 63 syl φzLBasisKzBaseKLSpanKz=BaseKuzvBaseF0F¬vKuLSpanKzu
65 eqid BaseL=BaseL
66 eqid L=L
67 eqid BaseG=BaseG
68 eqid LBasisL=LBasisL
69 eqid LSpanL=LSpanL
70 eqid 0G=0G
71 65 8 66 67 68 69 70 islbs LYzLBasisLzBaseLLSpanLz=BaseLuzvBaseG0G¬vLuLSpanLzu
72 13 71 syl φzLBasisLzBaseLLSpanLz=BaseLuzvBaseG0G¬vLuLSpanLzu
73 56 64 72 3bitr4d φzLBasisKzLBasisL
74 73 eqrdv φLBasisK=LBasisL