Metamath Proof Explorer


Theorem lcfrlem5

Description: Lemma for lcfr . The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace Q is closed under scalar product. TODO: share hypotheses with others. Use more consistent variable names here or elsewhere when possible. (Contributed by NM, 5-Mar-2015)

Ref Expression
Hypotheses lcfrlem5.h H = LHyp K
lcfrlem5.o ˙ = ocH K W
lcfrlem5.u U = DVecH K W
lcfrlem5.v V = Base U
lcfrlem5.f F = LFnl U
lcfrlem5.l L = LKer U
lcfrlem5.d D = LDual U
lcfrlem5.s S = LSubSp D
lcfrlem5.k φ K HL W H
lcfrlem5.r φ R S
lcfrlem5.q Q = f R ˙ L f
lcfrlem5.x φ X Q
lcfrlem5.c C = Scalar U
lcfrlem5.b B = Base C
lcfrlem5.t · ˙ = U
lcfrlem5.a φ A B
Assertion lcfrlem5 φ A · ˙ X Q

Proof

Step Hyp Ref Expression
1 lcfrlem5.h H = LHyp K
2 lcfrlem5.o ˙ = ocH K W
3 lcfrlem5.u U = DVecH K W
4 lcfrlem5.v V = Base U
5 lcfrlem5.f F = LFnl U
6 lcfrlem5.l L = LKer U
7 lcfrlem5.d D = LDual U
8 lcfrlem5.s S = LSubSp D
9 lcfrlem5.k φ K HL W H
10 lcfrlem5.r φ R S
11 lcfrlem5.q Q = f R ˙ L f
12 lcfrlem5.x φ X Q
13 lcfrlem5.c C = Scalar U
14 lcfrlem5.b B = Base C
15 lcfrlem5.t · ˙ = U
16 lcfrlem5.a φ A B
17 12 11 eleqtrdi φ X f R ˙ L f
18 eliun X f R ˙ L f f R X ˙ L f
19 17 18 sylib φ f R X ˙ L f
20 1 3 9 dvhlmod φ U LMod
21 20 ad2antrr φ f R X ˙ L f U LMod
22 9 ad2antrr φ f R X ˙ L f K HL W H
23 eqid Base D = Base D
24 23 8 lssss R S R Base D
25 10 24 syl φ R Base D
26 5 7 23 20 ldualvbase φ Base D = F
27 25 26 sseqtrd φ R F
28 27 sselda φ f R f F
29 28 adantr φ f R X ˙ L f f F
30 4 5 6 21 29 lkrssv φ f R X ˙ L f L f V
31 eqid LSubSp U = LSubSp U
32 1 3 4 31 2 dochlss K HL W H L f V ˙ L f LSubSp U
33 22 30 32 syl2anc φ f R X ˙ L f ˙ L f LSubSp U
34 16 ad2antrr φ f R X ˙ L f A B
35 simpr φ f R X ˙ L f X ˙ L f
36 13 15 14 31 lssvscl U LMod ˙ L f LSubSp U A B X ˙ L f A · ˙ X ˙ L f
37 21 33 34 35 36 syl22anc φ f R X ˙ L f A · ˙ X ˙ L f
38 37 ex φ f R X ˙ L f A · ˙ X ˙ L f
39 38 reximdva φ f R X ˙ L f f R A · ˙ X ˙ L f
40 19 39 mpd φ f R A · ˙ X ˙ L f
41 eliun A · ˙ X f R ˙ L f f R A · ˙ X ˙ L f
42 40 41 sylibr φ A · ˙ X f R ˙ L f
43 42 11 eleqtrrdi φ A · ˙ X Q