Description: Lemma for lcfr . The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace Q is closed under scalar product. TODO: share hypotheses with others. Use more consistent variable names here or elsewhere when possible. (Contributed by NM, 5-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem5.h | |
|
lcfrlem5.o | |
||
lcfrlem5.u | |
||
lcfrlem5.v | |
||
lcfrlem5.f | |
||
lcfrlem5.l | |
||
lcfrlem5.d | |
||
lcfrlem5.s | |
||
lcfrlem5.k | |
||
lcfrlem5.r | |
||
lcfrlem5.q | |
||
lcfrlem5.x | |
||
lcfrlem5.c | |
||
lcfrlem5.b | |
||
lcfrlem5.t | |
||
lcfrlem5.a | |
||
Assertion | lcfrlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem5.h | |
|
2 | lcfrlem5.o | |
|
3 | lcfrlem5.u | |
|
4 | lcfrlem5.v | |
|
5 | lcfrlem5.f | |
|
6 | lcfrlem5.l | |
|
7 | lcfrlem5.d | |
|
8 | lcfrlem5.s | |
|
9 | lcfrlem5.k | |
|
10 | lcfrlem5.r | |
|
11 | lcfrlem5.q | |
|
12 | lcfrlem5.x | |
|
13 | lcfrlem5.c | |
|
14 | lcfrlem5.b | |
|
15 | lcfrlem5.t | |
|
16 | lcfrlem5.a | |
|
17 | 12 11 | eleqtrdi | |
18 | eliun | |
|
19 | 17 18 | sylib | |
20 | 1 3 9 | dvhlmod | |
21 | 20 | ad2antrr | |
22 | 9 | ad2antrr | |
23 | eqid | |
|
24 | 23 8 | lssss | |
25 | 10 24 | syl | |
26 | 5 7 23 20 | ldualvbase | |
27 | 25 26 | sseqtrd | |
28 | 27 | sselda | |
29 | 28 | adantr | |
30 | 4 5 6 21 29 | lkrssv | |
31 | eqid | |
|
32 | 1 3 4 31 2 | dochlss | |
33 | 22 30 32 | syl2anc | |
34 | 16 | ad2antrr | |
35 | simpr | |
|
36 | 13 15 14 31 | lssvscl | |
37 | 21 33 34 35 36 | syl22anc | |
38 | 37 | ex | |
39 | 38 | reximdva | |
40 | 19 39 | mpd | |
41 | eliun | |
|
42 | 40 41 | sylibr | |
43 | 42 11 | eleqtrrdi | |