Metamath Proof Explorer


Theorem lcfrlem5

Description: Lemma for lcfr . The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace Q is closed under scalar product. TODO: share hypotheses with others. Use more consistent variable names here or elsewhere when possible. (Contributed by NM, 5-Mar-2015)

Ref Expression
Hypotheses lcfrlem5.h H=LHypK
lcfrlem5.o ˙=ocHKW
lcfrlem5.u U=DVecHKW
lcfrlem5.v V=BaseU
lcfrlem5.f F=LFnlU
lcfrlem5.l L=LKerU
lcfrlem5.d D=LDualU
lcfrlem5.s S=LSubSpD
lcfrlem5.k φKHLWH
lcfrlem5.r φRS
lcfrlem5.q Q=fR˙Lf
lcfrlem5.x φXQ
lcfrlem5.c C=ScalarU
lcfrlem5.b B=BaseC
lcfrlem5.t ·˙=U
lcfrlem5.a φAB
Assertion lcfrlem5 φA·˙XQ

Proof

Step Hyp Ref Expression
1 lcfrlem5.h H=LHypK
2 lcfrlem5.o ˙=ocHKW
3 lcfrlem5.u U=DVecHKW
4 lcfrlem5.v V=BaseU
5 lcfrlem5.f F=LFnlU
6 lcfrlem5.l L=LKerU
7 lcfrlem5.d D=LDualU
8 lcfrlem5.s S=LSubSpD
9 lcfrlem5.k φKHLWH
10 lcfrlem5.r φRS
11 lcfrlem5.q Q=fR˙Lf
12 lcfrlem5.x φXQ
13 lcfrlem5.c C=ScalarU
14 lcfrlem5.b B=BaseC
15 lcfrlem5.t ·˙=U
16 lcfrlem5.a φAB
17 12 11 eleqtrdi φXfR˙Lf
18 eliun XfR˙LffRX˙Lf
19 17 18 sylib φfRX˙Lf
20 1 3 9 dvhlmod φULMod
21 20 ad2antrr φfRX˙LfULMod
22 9 ad2antrr φfRX˙LfKHLWH
23 eqid BaseD=BaseD
24 23 8 lssss RSRBaseD
25 10 24 syl φRBaseD
26 5 7 23 20 ldualvbase φBaseD=F
27 25 26 sseqtrd φRF
28 27 sselda φfRfF
29 28 adantr φfRX˙LffF
30 4 5 6 21 29 lkrssv φfRX˙LfLfV
31 eqid LSubSpU=LSubSpU
32 1 3 4 31 2 dochlss KHLWHLfV˙LfLSubSpU
33 22 30 32 syl2anc φfRX˙Lf˙LfLSubSpU
34 16 ad2antrr φfRX˙LfAB
35 simpr φfRX˙LfX˙Lf
36 13 15 14 31 lssvscl ULMod˙LfLSubSpUABX˙LfA·˙X˙Lf
37 21 33 34 35 36 syl22anc φfRX˙LfA·˙X˙Lf
38 37 ex φfRX˙LfA·˙X˙Lf
39 38 reximdva φfRX˙LffRA·˙X˙Lf
40 19 39 mpd φfRA·˙X˙Lf
41 eliun A·˙XfR˙LffRA·˙X˙Lf
42 40 41 sylibr φA·˙XfR˙Lf
43 42 11 eleqtrrdi φA·˙XQ