Metamath Proof Explorer


Theorem lcmfunsnlem

Description: Lemma for lcmfdvds and lcmfunsn . These two theorems must be proven simultaneously by induction on the cardinality of a finite set Y , because they depend on each other. This can be seen by the two parts lcmfunsnlem1 and lcmfunsnlem2 of the induction step, each of them using both induction hypotheses. (Contributed by AV, 26-Aug-2020)

Ref Expression
Assertion lcmfunsnlem YYFinkmYmklcm_Yknlcm_Yn=lcm_Ylcmn

Proof

Step Hyp Ref Expression
1 sseq1 x=x
2 raleq x=mxmkmmk
3 fveq2 x=lcm_x=lcm_
4 3 breq1d x=lcm_xklcm_k
5 2 4 imbi12d x=mxmklcm_xkmmklcm_k
6 5 ralbidv x=kmxmklcm_xkkmmklcm_k
7 uneq1 x=xn=n
8 7 fveq2d x=lcm_xn=lcm_n
9 3 oveq1d x=lcm_xlcmn=lcm_lcmn
10 8 9 eqeq12d x=lcm_xn=lcm_xlcmnlcm_n=lcm_lcmn
11 10 ralbidv x=nlcm_xn=lcm_xlcmnnlcm_n=lcm_lcmn
12 6 11 anbi12d x=kmxmklcm_xknlcm_xn=lcm_xlcmnkmmklcm_knlcm_n=lcm_lcmn
13 1 12 imbi12d x=xkmxmklcm_xknlcm_xn=lcm_xlcmnkmmklcm_knlcm_n=lcm_lcmn
14 sseq1 x=yxy
15 raleq x=ymxmkmymk
16 fveq2 x=ylcm_x=lcm_y
17 16 breq1d x=ylcm_xklcm_yk
18 15 17 imbi12d x=ymxmklcm_xkmymklcm_yk
19 18 ralbidv x=ykmxmklcm_xkkmymklcm_yk
20 uneq1 x=yxn=yn
21 20 fveq2d x=ylcm_xn=lcm_yn
22 16 oveq1d x=ylcm_xlcmn=lcm_ylcmn
23 21 22 eqeq12d x=ylcm_xn=lcm_xlcmnlcm_yn=lcm_ylcmn
24 23 ralbidv x=ynlcm_xn=lcm_xlcmnnlcm_yn=lcm_ylcmn
25 19 24 anbi12d x=ykmxmklcm_xknlcm_xn=lcm_xlcmnkmymklcm_yknlcm_yn=lcm_ylcmn
26 14 25 imbi12d x=yxkmxmklcm_xknlcm_xn=lcm_xlcmnykmymklcm_yknlcm_yn=lcm_ylcmn
27 sseq1 x=yzxyz
28 raleq x=yzmxmkmyzmk
29 fveq2 x=yzlcm_x=lcm_yz
30 29 breq1d x=yzlcm_xklcm_yzk
31 28 30 imbi12d x=yzmxmklcm_xkmyzmklcm_yzk
32 31 ralbidv x=yzkmxmklcm_xkkmyzmklcm_yzk
33 uneq1 x=yzxn=yzn
34 33 fveq2d x=yzlcm_xn=lcm_yzn
35 29 oveq1d x=yzlcm_xlcmn=lcm_yzlcmn
36 34 35 eqeq12d x=yzlcm_xn=lcm_xlcmnlcm_yzn=lcm_yzlcmn
37 36 ralbidv x=yznlcm_xn=lcm_xlcmnnlcm_yzn=lcm_yzlcmn
38 32 37 anbi12d x=yzkmxmklcm_xknlcm_xn=lcm_xlcmnkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
39 27 38 imbi12d x=yzxkmxmklcm_xknlcm_xn=lcm_xlcmnyzkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
40 sseq1 x=YxY
41 raleq x=YmxmkmYmk
42 fveq2 x=Ylcm_x=lcm_Y
43 42 breq1d x=Ylcm_xklcm_Yk
44 41 43 imbi12d x=Ymxmklcm_xkmYmklcm_Yk
45 44 ralbidv x=Ykmxmklcm_xkkmYmklcm_Yk
46 uneq1 x=Yxn=Yn
47 46 fveq2d x=Ylcm_xn=lcm_Yn
48 42 oveq1d x=Ylcm_xlcmn=lcm_Ylcmn
49 47 48 eqeq12d x=Ylcm_xn=lcm_xlcmnlcm_Yn=lcm_Ylcmn
50 49 ralbidv x=Ynlcm_xn=lcm_xlcmnnlcm_Yn=lcm_Ylcmn
51 45 50 anbi12d x=Ykmxmklcm_xknlcm_xn=lcm_xlcmnkmYmklcm_Yknlcm_Yn=lcm_Ylcmn
52 40 51 imbi12d x=Yxkmxmklcm_xknlcm_xn=lcm_xlcmnYkmYmklcm_Yknlcm_Yn=lcm_Ylcmn
53 lcmf0 lcm_=1
54 1dvds k1k
55 53 54 eqbrtrid klcm_k
56 55 a1d kmmklcm_k
57 56 adantl kmmklcm_k
58 57 ralrimiva kmmklcm_k
59 uncom n=n
60 un0 n=n
61 59 60 eqtri n=n
62 61 a1i nn=n
63 62 fveq2d nlcm_n=lcm_n
64 lcmfsn nlcm_n=n
65 53 a1i nlcm_=1
66 65 oveq1d nlcm_lcmn=1lcmn
67 1z 1
68 lcmcom 1n1lcmn=nlcm1
69 67 68 mpan n1lcmn=nlcm1
70 lcm1 nnlcm1=n
71 66 69 70 3eqtrrd nn=lcm_lcmn
72 63 64 71 3eqtrd nlcm_n=lcm_lcmn
73 72 adantl nlcm_n=lcm_lcmn
74 73 ralrimiva nlcm_n=lcm_lcmn
75 58 74 jca kmmklcm_knlcm_n=lcm_lcmn
76 unss yzyz
77 simpl yzy
78 76 77 sylbir yzy
79 78 adantl yFinyzy
80 vex zV
81 80 snss zz
82 lcmfunsnlem1 zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzk
83 lcmfunsnlem2 zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnnlcm_yzn=lcm_yzlcmn
84 82 83 jca zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
85 84 3exp1 zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
86 81 85 sylbir zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
87 86 impcom yzyFinkmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
88 76 87 sylbir yzyFinkmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
89 88 impcom yFinyzkmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
90 79 89 embantd yFinyzykmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
91 90 ex yFinyzykmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
92 91 com23 yFinykmymklcm_yknlcm_yn=lcm_ylcmnyzkmyzmklcm_yzknlcm_yzn=lcm_yzlcmn
93 13 26 39 52 75 92 findcard2 YFinYkmYmklcm_Yknlcm_Yn=lcm_Ylcmn
94 93 impcom YYFinkmYmklcm_Yknlcm_Yn=lcm_Ylcmn