Description: Dividing implies inequality for lcm inequality lemma. (Contributed by metakunt, 12-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lcmineqlem19.1 | |
|
Assertion | lcmineqlem19 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem19.1 | |
|
2 | 2nn | |
|
3 | 2 | a1i | |
4 | 3 1 | nnmulcld | |
5 | 4 | peano2nnd | |
6 | 1 | nnnn0d | |
7 | 1 | nnred | |
8 | 2re | |
|
9 | 8 | a1i | |
10 | 6 | nn0ge0d | |
11 | 3 | nnge1d | |
12 | 7 9 10 11 | lemulge12d | |
13 | 4 6 12 | bccl2d | |
14 | fz1ssnn | |
|
15 | fzfi | |
|
16 | lcmfnncl | |
|
17 | 14 15 16 | mp2an | |
18 | 17 | a1i | |
19 | fz1ssnn | |
|
20 | fzfi | |
|
21 | lcmfnncl | |
|
22 | 19 20 21 | mp2an | |
23 | 22 | a1i | |
24 | 1 4 12 | lcmineqlem16 | |
25 | 1 | lcmineqlem18 | |
26 | 1 | peano2nnd | |
27 | 9 7 | remulcld | |
28 | 1red | |
|
29 | 7 27 28 12 | leadd1dd | |
30 | 26 5 29 | lcmineqlem16 | |
31 | 25 30 | eqbrtrrd | |
32 | 18 | nnzd | |
33 | 5 | nnzd | |
34 | 32 33 | jca | |
35 | dvdslcm | |
|
36 | 34 35 | syl | |
37 | 36 | simpld | |
38 | 5 | lcmfunnnd | |
39 | 27 | recnd | |
40 | 1cnd | |
|
41 | 39 40 | pncand | |
42 | 41 | oveq2d | |
43 | 42 | fveq2d | |
44 | 43 | oveq1d | |
45 | 38 44 | eqtrd | |
46 | 37 45 | breqtrrd | |
47 | 1 | nnzd | |
48 | 2z | |
|
49 | 1z | |
|
50 | gcdaddm | |
|
51 | 48 49 50 | mp3an13 | |
52 | 47 51 | syl | |
53 | 40 39 | addcomd | |
54 | 53 | oveq2d | |
55 | 52 54 | eqtrd | |
56 | gcd1 | |
|
57 | 47 56 | syl | |
58 | 55 57 | eqtr3d | |
59 | 1 5 13 18 23 24 31 46 58 | lcmineqlem14 | |