Metamath Proof Explorer


Theorem limsupbnd2

Description: If a sequence is eventually greater than A , then the limsup is also greater than A . (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses limsupbnd.1 φB
limsupbnd.2 φF:B*
limsupbnd.3 φA*
limsupbnd2.4 φsupB*<=+∞
limsupbnd2.5 φkjBkjAFj
Assertion limsupbnd2 φAlim supF

Proof

Step Hyp Ref Expression
1 limsupbnd.1 φB
2 limsupbnd.2 φF:B*
3 limsupbnd.3 φA*
4 limsupbnd2.4 φsupB*<=+∞
5 limsupbnd2.5 φkjBkjAFj
6 ressxr *
7 1 6 sstrdi φB*
8 supxrunb1 B*njBnjsupB*<=+∞
9 7 8 syl φnjBnjsupB*<=+∞
10 4 9 mpbird φnjBnj
11 ifcl mkifkmmk
12 breq1 n=ifkmmknjifkmmkj
13 12 rexbidv n=ifkmmkjBnjjBifkmmkj
14 13 rspccva njBnjifkmmkjBifkmmkj
15 10 11 14 syl2an φmkjBifkmmkj
16 r19.29 jBkjAFjjBifkmmkjjBkjAFjifkmmkj
17 simplrr φmkjBk
18 simprl φmkm
19 18 adantr φmkjBm
20 max1 kmkifkmmk
21 17 19 20 syl2anc φmkjBkifkmmk
22 19 17 11 syl2anc φmkjBifkmmk
23 1 adantr φmkB
24 23 sselda φmkjBj
25 letr kifkmmkjkifkmmkifkmmkjkj
26 17 22 24 25 syl3anc φmkjBkifkmmkifkmmkjkj
27 21 26 mpand φmkjBifkmmkjkj
28 27 imim1d φmkjBkjAFjifkmmkjAFj
29 28 impd φmkjBkjAFjifkmmkjAFj
30 max2 kmmifkmmk
31 17 19 30 syl2anc φmkjBmifkmmk
32 letr mifkmmkjmifkmmkifkmmkjmj
33 19 22 24 32 syl3anc φmkjBmifkmmkifkmmkjmj
34 31 33 mpand φmkjBifkmmkjmj
35 34 adantld φmkjBkjAFjifkmmkjmj
36 eqid nsupFn+∞**<=nsupFn+∞**<
37 36 limsupgf nsupFn+∞**<:*
38 37 ffvelcdmi mnsupFn+∞**<m*
39 38 adantl φmnsupFn+∞**<m*
40 39 xrleidd φmnsupFn+∞**<mnsupFn+∞**<m
41 40 adantrr φmknsupFn+∞**<mnsupFn+∞**<m
42 2 adantr φmkF:B*
43 18 38 syl φmknsupFn+∞**<m*
44 36 limsupgle BF:B*mnsupFn+∞**<m*nsupFn+∞**<mnsupFn+∞**<mjBmjFjnsupFn+∞**<m
45 23 42 18 43 44 syl211anc φmknsupFn+∞**<mnsupFn+∞**<mjBmjFjnsupFn+∞**<m
46 41 45 mpbid φmkjBmjFjnsupFn+∞**<m
47 46 r19.21bi φmkjBmjFjnsupFn+∞**<m
48 35 47 syld φmkjBkjAFjifkmmkjFjnsupFn+∞**<m
49 29 48 jcad φmkjBkjAFjifkmmkjAFjFjnsupFn+∞**<m
50 3 ad2antrr φmkjBA*
51 42 ffvelcdmda φmkjBFj*
52 43 adantr φmkjBnsupFn+∞**<m*
53 xrletr A*Fj*nsupFn+∞**<m*AFjFjnsupFn+∞**<mAnsupFn+∞**<m
54 50 51 52 53 syl3anc φmkjBAFjFjnsupFn+∞**<mAnsupFn+∞**<m
55 49 54 syld φmkjBkjAFjifkmmkjAnsupFn+∞**<m
56 55 rexlimdva φmkjBkjAFjifkmmkjAnsupFn+∞**<m
57 16 56 syl5 φmkjBkjAFjjBifkmmkjAnsupFn+∞**<m
58 15 57 mpan2d φmkjBkjAFjAnsupFn+∞**<m
59 58 anassrs φmkjBkjAFjAnsupFn+∞**<m
60 59 rexlimdva φmkjBkjAFjAnsupFn+∞**<m
61 60 ralrimdva φkjBkjAFjmAnsupFn+∞**<m
62 5 61 mpd φmAnsupFn+∞**<m
63 36 limsuple BF:B*A*Alim supFmAnsupFn+∞**<m
64 1 2 3 63 syl3anc φAlim supFmAnsupFn+∞**<m
65 62 64 mpbird φAlim supF