Metamath Proof Explorer


Theorem linccl

Description: A linear combination of vectors is a vector. (Contributed by AV, 31-Mar-2019)

Ref Expression
Hypotheses linccl.b B=BaseM
linccl.r R=BaseScalarM
Assertion linccl MLModVFinVBSRVSlinCMVB

Proof

Step Hyp Ref Expression
1 linccl.b B=BaseM
2 linccl.r R=BaseScalarM
3 simpl MLModVFinVBSRVMLMod
4 2 oveq1i RV=BaseScalarMV
5 4 eleq2i SRVSBaseScalarMV
6 5 biimpi SRVSBaseScalarMV
7 6 3ad2ant3 VFinVBSRVSBaseScalarMV
8 7 adantl MLModVFinVBSRVSBaseScalarMV
9 1 sseq2i VBVBaseM
10 fvex BaseMV
11 10 ssex VBaseMVV
12 elpwg VVV𝒫BaseMVBaseM
13 11 12 syl VBaseMV𝒫BaseMVBaseM
14 13 ibir VBaseMV𝒫BaseM
15 9 14 sylbi VBV𝒫BaseM
16 15 3ad2ant2 VFinVBSRVV𝒫BaseM
17 16 adantl MLModVFinVBSRVV𝒫BaseM
18 lincval MLModSBaseScalarMVV𝒫BaseMSlinCMV=MvVSvMv
19 3 8 17 18 syl3anc MLModVFinVBSRVSlinCMV=MvVSvMv
20 eqid 0M=0M
21 lmodcmn MLModMCMnd
22 21 adantr MLModVFinVBSRVMCMnd
23 simpr1 MLModVFinVBSRVVFin
24 3 adantr MLModVFinVBSRVvVMLMod
25 2 fvexi RV
26 elmapg RVVFinSRVS:VR
27 25 26 mpan VFinSRVS:VR
28 ffvelcdm S:VRvVSvR
29 28 ex S:VRvVSvR
30 27 29 syl6bi VFinSRVvVSvR
31 30 imp VFinSRVvVSvR
32 31 3adant2 VFinVBSRVvVSvR
33 32 adantl MLModVFinVBSRVvVSvR
34 33 imp MLModVFinVBSRVvVSvR
35 ssel VBvVvB
36 35 3ad2ant2 VFinVBSRVvVvB
37 36 adantl MLModVFinVBSRVvVvB
38 37 imp MLModVFinVBSRVvVvB
39 eqid ScalarM=ScalarM
40 eqid M=M
41 1 39 40 2 lmodvscl MLModSvRvBSvMvB
42 24 34 38 41 syl3anc MLModVFinVBSRVvVSvMvB
43 42 fmpttd MLModVFinVBSRVvVSvMv:VB
44 16 anim2i MLModVFinVBSRVMLModV𝒫BaseM
45 simpr3 MLModVFinVBSRVSRV
46 elmapi SRVS:VR
47 46 3ad2ant3 VFinVBSRVS:VR
48 47 adantl MLModVFinVBSRVS:VR
49 fvexd MLModVFinVBSRV0ScalarMV
50 48 23 49 fdmfifsupp MLModVFinVBSRVfinSupp0ScalarMS
51 39 2 scmfsupp MLModV𝒫BaseMSRVfinSupp0ScalarMSfinSupp0MvVSvMv
52 44 45 50 51 syl3anc MLModVFinVBSRVfinSupp0MvVSvMv
53 1 20 22 23 43 52 gsumcl MLModVFinVBSRVMvVSvMvB
54 19 53 eqeltrd MLModVFinVBSRVSlinCMVB