Metamath Proof Explorer


Theorem lincresunit3lem3

Description: Lemma 3 for lincresunit3 . (Contributed by AV, 18-May-2019)

Ref Expression
Hypotheses lincresunit3lem3.b B=BaseM
lincresunit3lem3.r R=ScalarM
lincresunit3lem3.e E=BaseR
lincresunit3lem3.u U=UnitR
lincresunit3lem3.n N=invgR
lincresunit3lem3.t ·˙=M
Assertion lincresunit3lem3 MLModXBYBAUNA·˙X=NA·˙YX=Y

Proof

Step Hyp Ref Expression
1 lincresunit3lem3.b B=BaseM
2 lincresunit3lem3.r R=ScalarM
3 lincresunit3lem3.e E=BaseR
4 lincresunit3lem3.u U=UnitR
5 lincresunit3lem3.n N=invgR
6 lincresunit3lem3.t ·˙=M
7 3simpa MLModXBYBMLModXB
8 7 adantr MLModXBYBAUMLModXB
9 eqid 1R=1R
10 1 2 6 9 lmodvs1 MLModXB1R·˙X=X
11 8 10 syl MLModXBYBAU1R·˙X=X
12 2 lmodring MLModRRing
13 12 3ad2ant1 MLModXBYBRRing
14 13 adantr MLModXBYBAURRing
15 4 5 unitnegcl RRingAUNAU
16 12 15 sylan MLModAUNAU
17 16 3ad2antl1 MLModXBYBAUNAU
18 14 17 jca MLModXBYBAURRingNAU
19 eqid invrR=invrR
20 eqid R=R
21 4 19 20 9 unitlinv RRingNAUinvrRNARNA=1R
22 18 21 syl MLModXBYBAUinvrRNARNA=1R
23 22 eqcomd MLModXBYBAU1R=invrRNARNA
24 23 oveq1d MLModXBYBAU1R·˙X=invrRNARNA·˙X
25 11 24 eqtr3d MLModXBYBAUX=invrRNARNA·˙X
26 25 adantr MLModXBYBAUNA·˙X=NA·˙YX=invrRNARNA·˙X
27 simpl1 MLModXBYBAUMLMod
28 4 19 3 ringinvcl RRingNAUinvrRNAE
29 18 28 syl MLModXBYBAUinvrRNAE
30 2 lmodfgrp MLModRGrp
31 30 3ad2ant1 MLModXBYBRGrp
32 3 4 unitcl AUAE
33 3 5 grpinvcl RGrpAENAE
34 31 32 33 syl2an MLModXBYBAUNAE
35 simpl2 MLModXBYBAUXB
36 29 34 35 3jca MLModXBYBAUinvrRNAENAEXB
37 27 36 jca MLModXBYBAUMLModinvrRNAENAEXB
38 37 adantr MLModXBYBAUNA·˙X=NA·˙YMLModinvrRNAENAEXB
39 1 2 6 3 20 lmodvsass MLModinvrRNAENAEXBinvrRNARNA·˙X=invrRNA·˙NA·˙X
40 38 39 syl MLModXBYBAUNA·˙X=NA·˙YinvrRNARNA·˙X=invrRNA·˙NA·˙X
41 oveq2 NA·˙X=NA·˙YinvrRNA·˙NA·˙X=invrRNA·˙NA·˙Y
42 41 adantl MLModXBYBAUNA·˙X=NA·˙YinvrRNA·˙NA·˙X=invrRNA·˙NA·˙Y
43 27 adantr MLModXBYBAUNA·˙X=NA·˙YMLMod
44 simpl3 MLModXBYBAUYB
45 29 34 44 3jca MLModXBYBAUinvrRNAENAEYB
46 45 adantr MLModXBYBAUNA·˙X=NA·˙YinvrRNAENAEYB
47 43 46 jca MLModXBYBAUNA·˙X=NA·˙YMLModinvrRNAENAEYB
48 1 2 6 3 20 lmodvsass MLModinvrRNAENAEYBinvrRNARNA·˙Y=invrRNA·˙NA·˙Y
49 47 48 syl MLModXBYBAUNA·˙X=NA·˙YinvrRNARNA·˙Y=invrRNA·˙NA·˙Y
50 18 adantr MLModXBYBAUNA·˙X=NA·˙YRRingNAU
51 50 21 syl MLModXBYBAUNA·˙X=NA·˙YinvrRNARNA=1R
52 51 oveq1d MLModXBYBAUNA·˙X=NA·˙YinvrRNARNA·˙Y=1R·˙Y
53 49 52 eqtr3d MLModXBYBAUNA·˙X=NA·˙YinvrRNA·˙NA·˙Y=1R·˙Y
54 40 42 53 3eqtrd MLModXBYBAUNA·˙X=NA·˙YinvrRNARNA·˙X=1R·˙Y
55 3simpb MLModXBYBMLModYB
56 55 adantr MLModXBYBAUMLModYB
57 56 adantr MLModXBYBAUNA·˙X=NA·˙YMLModYB
58 1 2 6 9 lmodvs1 MLModYB1R·˙Y=Y
59 57 58 syl MLModXBYBAUNA·˙X=NA·˙Y1R·˙Y=Y
60 26 54 59 3eqtrd MLModXBYBAUNA·˙X=NA·˙YX=Y
61 60 ex MLModXBYBAUNA·˙X=NA·˙YX=Y
62 oveq2 X=YNA·˙X=NA·˙Y
63 61 62 impbid1 MLModXBYBAUNA·˙X=NA·˙YX=Y