Description: Lemma 3 for lincresunit3 . (Contributed by AV, 18-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lincresunit3lem3.b | |
|
lincresunit3lem3.r | |
||
lincresunit3lem3.e | |
||
lincresunit3lem3.u | |
||
lincresunit3lem3.n | |
||
lincresunit3lem3.t | |
||
Assertion | lincresunit3lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincresunit3lem3.b | |
|
2 | lincresunit3lem3.r | |
|
3 | lincresunit3lem3.e | |
|
4 | lincresunit3lem3.u | |
|
5 | lincresunit3lem3.n | |
|
6 | lincresunit3lem3.t | |
|
7 | 3simpa | |
|
8 | 7 | adantr | |
9 | eqid | |
|
10 | 1 2 6 9 | lmodvs1 | |
11 | 8 10 | syl | |
12 | 2 | lmodring | |
13 | 12 | 3ad2ant1 | |
14 | 13 | adantr | |
15 | 4 5 | unitnegcl | |
16 | 12 15 | sylan | |
17 | 16 | 3ad2antl1 | |
18 | 14 17 | jca | |
19 | eqid | |
|
20 | eqid | |
|
21 | 4 19 20 9 | unitlinv | |
22 | 18 21 | syl | |
23 | 22 | eqcomd | |
24 | 23 | oveq1d | |
25 | 11 24 | eqtr3d | |
26 | 25 | adantr | |
27 | simpl1 | |
|
28 | 4 19 3 | ringinvcl | |
29 | 18 28 | syl | |
30 | 2 | lmodfgrp | |
31 | 30 | 3ad2ant1 | |
32 | 3 4 | unitcl | |
33 | 3 5 | grpinvcl | |
34 | 31 32 33 | syl2an | |
35 | simpl2 | |
|
36 | 29 34 35 | 3jca | |
37 | 27 36 | jca | |
38 | 37 | adantr | |
39 | 1 2 6 3 20 | lmodvsass | |
40 | 38 39 | syl | |
41 | oveq2 | |
|
42 | 41 | adantl | |
43 | 27 | adantr | |
44 | simpl3 | |
|
45 | 29 34 44 | 3jca | |
46 | 45 | adantr | |
47 | 43 46 | jca | |
48 | 1 2 6 3 20 | lmodvsass | |
49 | 47 48 | syl | |
50 | 18 | adantr | |
51 | 50 21 | syl | |
52 | 51 | oveq1d | |
53 | 49 52 | eqtr3d | |
54 | 40 42 53 | 3eqtrd | |
55 | 3simpb | |
|
56 | 55 | adantr | |
57 | 56 | adantr | |
58 | 1 2 6 9 | lmodvs1 | |
59 | 57 58 | syl | |
60 | 26 54 59 | 3eqtrd | |
61 | 60 | ex | |
62 | oveq2 | |
|
63 | 61 62 | impbid1 | |