| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lincvalsc0.b |  | 
						
							| 2 |  | lincvalsc0.s |  | 
						
							| 3 |  | lincvalsc0.0 |  | 
						
							| 4 |  | lincvalsc0.z |  | 
						
							| 5 |  | lincvalsc0.f |  | 
						
							| 6 |  | simpl |  | 
						
							| 7 | 2 | eqcomi |  | 
						
							| 8 | 7 | fveq2i |  | 
						
							| 9 | 2 8 3 | lmod0cl |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 11 5 | fmptd |  | 
						
							| 13 |  | fvexd |  | 
						
							| 14 |  | elmapg |  | 
						
							| 15 | 13 14 | sylan |  | 
						
							| 16 | 12 15 | mpbird |  | 
						
							| 17 | 1 | pweqi |  | 
						
							| 18 | 17 | eleq2i |  | 
						
							| 19 | 18 | biimpi |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 |  | lincval |  | 
						
							| 22 | 6 16 20 21 | syl3anc |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 | 3 | fvexi |  | 
						
							| 25 |  | eqidd |  | 
						
							| 26 | 25 5 | fvmptg |  | 
						
							| 27 | 23 24 26 | sylancl |  | 
						
							| 28 | 27 | oveq1d |  | 
						
							| 29 | 6 | adantr |  | 
						
							| 30 |  | elelpwi |  | 
						
							| 31 | 30 | expcom |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 | 32 | imp |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 1 2 34 3 4 | lmod0vs |  | 
						
							| 36 | 29 33 35 | syl2anc |  | 
						
							| 37 | 28 36 | eqtrd |  | 
						
							| 38 | 37 | mpteq2dva |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 |  | lmodgrp |  | 
						
							| 41 | 40 | grpmndd |  | 
						
							| 42 | 4 | gsumz |  | 
						
							| 43 | 41 42 | sylan |  | 
						
							| 44 | 22 39 43 | 3eqtrd |  |