Metamath Proof Explorer


Theorem lkrlspeqN

Description: Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lkrlspeq.f F=LFnlW
lkrlspeq.l L=LKerW
lkrlspeq.d D=LDualW
lkrlspeq.o 0˙=0D
lkrlspeq.j N=LSpanD
lkrlspeq.w φWLVec
lkrlspeq.h φHF
lkrlspeq.g φGNH0˙
Assertion lkrlspeqN φLG=LH

Proof

Step Hyp Ref Expression
1 lkrlspeq.f F=LFnlW
2 lkrlspeq.l L=LKerW
3 lkrlspeq.d D=LDualW
4 lkrlspeq.o 0˙=0D
5 lkrlspeq.j N=LSpanD
6 lkrlspeq.w φWLVec
7 lkrlspeq.h φHF
8 lkrlspeq.g φGNH0˙
9 8 eldifad φGNH
10 lveclmod WLVecWLMod
11 6 10 syl φWLMod
12 3 11 lduallmod φDLMod
13 eqid BaseD=BaseD
14 1 3 13 6 7 ldualelvbase φHBaseD
15 eqid ScalarD=ScalarD
16 eqid BaseScalarD=BaseScalarD
17 eqid D=D
18 15 16 13 17 5 lspsnel DLModHBaseDGNHkBaseScalarDG=kDH
19 12 14 18 syl2anc φGNHkBaseScalarDG=kDH
20 9 19 mpbid φkBaseScalarDG=kDH
21 eqid ScalarW=ScalarW
22 eqid BaseScalarW=BaseScalarW
23 21 22 3 15 16 6 ldualsbase φBaseScalarD=BaseScalarW
24 23 rexeqdv φkBaseScalarDG=kDHkBaseScalarWG=kDH
25 20 24 mpbid φkBaseScalarWG=kDH
26 eqid 0ScalarW=0ScalarW
27 6 3ad2ant1 φkBaseScalarWG=kDHWLVec
28 simp2 φkBaseScalarWG=kDHkBaseScalarW
29 simp3 φkBaseScalarWG=kDHG=kDH
30 eldifsni GNH0˙G0˙
31 8 30 syl φG0˙
32 31 3ad2ant1 φkBaseScalarWG=kDHG0˙
33 29 32 eqnetrrd φkBaseScalarWG=kDHkDH0˙
34 eqid 0ScalarD=0ScalarD
35 21 26 3 15 34 11 ldual0 φ0ScalarD=0ScalarW
36 35 3ad2ant1 φkBaseScalarWG=kDH0ScalarD=0ScalarW
37 36 eqeq2d φkBaseScalarWG=kDHk=0ScalarDk=0ScalarW
38 orc k=0ScalarDk=0ScalarDH=0˙
39 37 38 syl6bir φkBaseScalarWG=kDHk=0ScalarWk=0ScalarDH=0˙
40 3 6 lduallvec φDLVec
41 40 3ad2ant1 φkBaseScalarWG=kDHDLVec
42 23 3ad2ant1 φkBaseScalarWG=kDHBaseScalarD=BaseScalarW
43 28 42 eleqtrrd φkBaseScalarWG=kDHkBaseScalarD
44 14 3ad2ant1 φkBaseScalarWG=kDHHBaseD
45 13 17 15 16 34 4 41 43 44 lvecvs0or φkBaseScalarWG=kDHkDH=0˙k=0ScalarDH=0˙
46 39 45 sylibrd φkBaseScalarWG=kDHk=0ScalarWkDH=0˙
47 46 necon3d φkBaseScalarWG=kDHkDH0˙k0ScalarW
48 33 47 mpd φkBaseScalarWG=kDHk0ScalarW
49 eldifsn kBaseScalarW0ScalarWkBaseScalarWk0ScalarW
50 28 48 49 sylanbrc φkBaseScalarWG=kDHkBaseScalarW0ScalarW
51 7 3ad2ant1 φkBaseScalarWG=kDHHF
52 21 22 26 1 2 3 17 27 50 51 29 lkreqN φkBaseScalarWG=kDHLG=LH
53 52 rexlimdv3a φkBaseScalarWG=kDHLG=LH
54 25 53 mpd φLG=LH