Description: Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lkrlspeq.f | |
|
lkrlspeq.l | |
||
lkrlspeq.d | |
||
lkrlspeq.o | |
||
lkrlspeq.j | |
||
lkrlspeq.w | |
||
lkrlspeq.h | |
||
lkrlspeq.g | |
||
Assertion | lkrlspeqN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrlspeq.f | |
|
2 | lkrlspeq.l | |
|
3 | lkrlspeq.d | |
|
4 | lkrlspeq.o | |
|
5 | lkrlspeq.j | |
|
6 | lkrlspeq.w | |
|
7 | lkrlspeq.h | |
|
8 | lkrlspeq.g | |
|
9 | 8 | eldifad | |
10 | lveclmod | |
|
11 | 6 10 | syl | |
12 | 3 11 | lduallmod | |
13 | eqid | |
|
14 | 1 3 13 6 7 | ldualelvbase | |
15 | eqid | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 15 16 13 17 5 | lspsnel | |
19 | 12 14 18 | syl2anc | |
20 | 9 19 | mpbid | |
21 | eqid | |
|
22 | eqid | |
|
23 | 21 22 3 15 16 6 | ldualsbase | |
24 | 23 | rexeqdv | |
25 | 20 24 | mpbid | |
26 | eqid | |
|
27 | 6 | 3ad2ant1 | |
28 | simp2 | |
|
29 | simp3 | |
|
30 | eldifsni | |
|
31 | 8 30 | syl | |
32 | 31 | 3ad2ant1 | |
33 | 29 32 | eqnetrrd | |
34 | eqid | |
|
35 | 21 26 3 15 34 11 | ldual0 | |
36 | 35 | 3ad2ant1 | |
37 | 36 | eqeq2d | |
38 | orc | |
|
39 | 37 38 | syl6bir | |
40 | 3 6 | lduallvec | |
41 | 40 | 3ad2ant1 | |
42 | 23 | 3ad2ant1 | |
43 | 28 42 | eleqtrrd | |
44 | 14 | 3ad2ant1 | |
45 | 13 17 15 16 34 4 41 43 44 | lvecvs0or | |
46 | 39 45 | sylibrd | |
47 | 46 | necon3d | |
48 | 33 47 | mpd | |
49 | eldifsn | |
|
50 | 28 48 49 | sylanbrc | |
51 | 7 | 3ad2ant1 | |
52 | 21 22 26 1 2 3 17 27 50 51 29 | lkreqN | |
53 | 52 | rexlimdv3a | |
54 | 25 53 | mpd | |