Description: A bijective module homomorphism is also converse homomorphic. (Contributed by Stefan O'Rear, 25-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmhmf1o.x | |
|
lmhmf1o.y | |
||
Assertion | lmhmf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmf1o.x | |
|
2 | lmhmf1o.y | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | lmhmlmod2 | |
|
9 | 8 | adantr | |
10 | lmhmlmod1 | |
|
11 | 10 | adantr | |
12 | 6 5 | lmhmsca | |
13 | 12 | eqcomd | |
14 | 13 | adantr | |
15 | lmghm | |
|
16 | 1 2 | ghmf1o | |
17 | 15 16 | syl | |
18 | 17 | biimpa | |
19 | simpll | |
|
20 | 14 | fveq2d | |
21 | 20 | eleq2d | |
22 | 21 | biimpar | |
23 | 22 | adantrr | |
24 | f1ocnv | |
|
25 | f1of | |
|
26 | 24 25 | syl | |
27 | 26 | adantl | |
28 | 27 | ffvelcdmda | |
29 | 28 | adantrl | |
30 | eqid | |
|
31 | 6 30 1 4 3 | lmhmlin | |
32 | 19 23 29 31 | syl3anc | |
33 | f1ocnvfv2 | |
|
34 | 33 | ad2ant2l | |
35 | 34 | oveq2d | |
36 | 32 35 | eqtrd | |
37 | simplr | |
|
38 | 11 | adantr | |
39 | 1 6 4 30 | lmodvscl | |
40 | 38 23 29 39 | syl3anc | |
41 | f1ocnvfv | |
|
42 | 37 40 41 | syl2anc | |
43 | 36 42 | mpd | |
44 | 2 3 4 5 6 7 9 11 14 18 43 | islmhmd | |
45 | 1 2 | lmhmf | |
46 | 45 | ffnd | |
47 | 46 | adantr | |
48 | 2 1 | lmhmf | |
49 | 48 | adantl | |
50 | 49 | ffnd | |
51 | dff1o4 | |
|
52 | 47 50 51 | sylanbrc | |
53 | 44 52 | impbida | |