Metamath Proof Explorer


Theorem lmhmf1o

Description: A bijective module homomorphism is also converse homomorphic. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypotheses lmhmf1o.x X=BaseS
lmhmf1o.y Y=BaseT
Assertion lmhmf1o FSLMHomTF:X1-1 ontoYF-1TLMHomS

Proof

Step Hyp Ref Expression
1 lmhmf1o.x X=BaseS
2 lmhmf1o.y Y=BaseT
3 eqid T=T
4 eqid S=S
5 eqid ScalarT=ScalarT
6 eqid ScalarS=ScalarS
7 eqid BaseScalarT=BaseScalarT
8 lmhmlmod2 FSLMHomTTLMod
9 8 adantr FSLMHomTF:X1-1 ontoYTLMod
10 lmhmlmod1 FSLMHomTSLMod
11 10 adantr FSLMHomTF:X1-1 ontoYSLMod
12 6 5 lmhmsca FSLMHomTScalarT=ScalarS
13 12 eqcomd FSLMHomTScalarS=ScalarT
14 13 adantr FSLMHomTF:X1-1 ontoYScalarS=ScalarT
15 lmghm FSLMHomTFSGrpHomT
16 1 2 ghmf1o FSGrpHomTF:X1-1 ontoYF-1TGrpHomS
17 15 16 syl FSLMHomTF:X1-1 ontoYF-1TGrpHomS
18 17 biimpa FSLMHomTF:X1-1 ontoYF-1TGrpHomS
19 simpll FSLMHomTF:X1-1 ontoYaBaseScalarTbYFSLMHomT
20 14 fveq2d FSLMHomTF:X1-1 ontoYBaseScalarS=BaseScalarT
21 20 eleq2d FSLMHomTF:X1-1 ontoYaBaseScalarSaBaseScalarT
22 21 biimpar FSLMHomTF:X1-1 ontoYaBaseScalarTaBaseScalarS
23 22 adantrr FSLMHomTF:X1-1 ontoYaBaseScalarTbYaBaseScalarS
24 f1ocnv F:X1-1 ontoYF-1:Y1-1 ontoX
25 f1of F-1:Y1-1 ontoXF-1:YX
26 24 25 syl F:X1-1 ontoYF-1:YX
27 26 adantl FSLMHomTF:X1-1 ontoYF-1:YX
28 27 ffvelcdmda FSLMHomTF:X1-1 ontoYbYF-1bX
29 28 adantrl FSLMHomTF:X1-1 ontoYaBaseScalarTbYF-1bX
30 eqid BaseScalarS=BaseScalarS
31 6 30 1 4 3 lmhmlin FSLMHomTaBaseScalarSF-1bXFaSF-1b=aTFF-1b
32 19 23 29 31 syl3anc FSLMHomTF:X1-1 ontoYaBaseScalarTbYFaSF-1b=aTFF-1b
33 f1ocnvfv2 F:X1-1 ontoYbYFF-1b=b
34 33 ad2ant2l FSLMHomTF:X1-1 ontoYaBaseScalarTbYFF-1b=b
35 34 oveq2d FSLMHomTF:X1-1 ontoYaBaseScalarTbYaTFF-1b=aTb
36 32 35 eqtrd FSLMHomTF:X1-1 ontoYaBaseScalarTbYFaSF-1b=aTb
37 simplr FSLMHomTF:X1-1 ontoYaBaseScalarTbYF:X1-1 ontoY
38 11 adantr FSLMHomTF:X1-1 ontoYaBaseScalarTbYSLMod
39 1 6 4 30 lmodvscl SLModaBaseScalarSF-1bXaSF-1bX
40 38 23 29 39 syl3anc FSLMHomTF:X1-1 ontoYaBaseScalarTbYaSF-1bX
41 f1ocnvfv F:X1-1 ontoYaSF-1bXFaSF-1b=aTbF-1aTb=aSF-1b
42 37 40 41 syl2anc FSLMHomTF:X1-1 ontoYaBaseScalarTbYFaSF-1b=aTbF-1aTb=aSF-1b
43 36 42 mpd FSLMHomTF:X1-1 ontoYaBaseScalarTbYF-1aTb=aSF-1b
44 2 3 4 5 6 7 9 11 14 18 43 islmhmd FSLMHomTF:X1-1 ontoYF-1TLMHomS
45 1 2 lmhmf FSLMHomTF:XY
46 45 ffnd FSLMHomTFFnX
47 46 adantr FSLMHomTF-1TLMHomSFFnX
48 2 1 lmhmf F-1TLMHomSF-1:YX
49 48 adantl FSLMHomTF-1TLMHomSF-1:YX
50 49 ffnd FSLMHomTF-1TLMHomSF-1FnY
51 dff1o4 F:X1-1 ontoYFFnXF-1FnY
52 47 50 51 sylanbrc FSLMHomTF-1TLMHomSF:X1-1 ontoY
53 44 52 impbida FSLMHomTF:X1-1 ontoYF-1TLMHomS