Metamath Proof Explorer


Theorem lmhmfgima

Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses lmhmfgima.y Y=T𝑠FA
lmhmfgima.x X=S𝑠A
lmhmfgima.u U=LSubSpS
lmhmfgima.xf φXLFinGen
lmhmfgima.a φAU
lmhmfgima.f φFSLMHomT
Assertion lmhmfgima φYLFinGen

Proof

Step Hyp Ref Expression
1 lmhmfgima.y Y=T𝑠FA
2 lmhmfgima.x X=S𝑠A
3 lmhmfgima.u U=LSubSpS
4 lmhmfgima.xf φXLFinGen
5 lmhmfgima.a φAU
6 lmhmfgima.f φFSLMHomT
7 lmhmlmod1 FSLMHomTSLMod
8 6 7 syl φSLMod
9 eqid LSpanS=LSpanS
10 eqid BaseS=BaseS
11 2 3 9 10 islssfg2 SLModAUXLFinGenx𝒫BaseSFinLSpanSx=A
12 8 5 11 syl2anc φXLFinGenx𝒫BaseSFinLSpanSx=A
13 4 12 mpbid φx𝒫BaseSFinLSpanSx=A
14 inss1 𝒫BaseSFin𝒫BaseS
15 14 sseli x𝒫BaseSFinx𝒫BaseS
16 15 elpwid x𝒫BaseSFinxBaseS
17 eqid LSpanT=LSpanT
18 10 9 17 lmhmlsp FSLMHomTxBaseSFLSpanSx=LSpanTFx
19 6 16 18 syl2an φx𝒫BaseSFinFLSpanSx=LSpanTFx
20 19 oveq2d φx𝒫BaseSFinT𝑠FLSpanSx=T𝑠LSpanTFx
21 lmhmlmod2 FSLMHomTTLMod
22 6 21 syl φTLMod
23 22 adantr φx𝒫BaseSFinTLMod
24 imassrn FxranF
25 eqid BaseT=BaseT
26 10 25 lmhmf FSLMHomTF:BaseSBaseT
27 6 26 syl φF:BaseSBaseT
28 27 frnd φranFBaseT
29 24 28 sstrid φFxBaseT
30 29 adantr φx𝒫BaseSFinFxBaseT
31 inss2 𝒫BaseSFinFin
32 31 sseli x𝒫BaseSFinxFin
33 32 adantl φx𝒫BaseSFinxFin
34 27 ffund φFunF
35 34 adantr φx𝒫BaseSFinFunF
36 16 adantl φx𝒫BaseSFinxBaseS
37 27 fdmd φdomF=BaseS
38 37 adantr φx𝒫BaseSFindomF=BaseS
39 36 38 sseqtrrd φx𝒫BaseSFinxdomF
40 fores FunFxdomFFx:xontoFx
41 35 39 40 syl2anc φx𝒫BaseSFinFx:xontoFx
42 fofi xFinFx:xontoFxFxFin
43 33 41 42 syl2anc φx𝒫BaseSFinFxFin
44 eqid T𝑠LSpanTFx=T𝑠LSpanTFx
45 17 25 44 islssfgi TLModFxBaseTFxFinT𝑠LSpanTFxLFinGen
46 23 30 43 45 syl3anc φx𝒫BaseSFinT𝑠LSpanTFxLFinGen
47 20 46 eqeltrd φx𝒫BaseSFinT𝑠FLSpanSxLFinGen
48 imaeq2 LSpanSx=AFLSpanSx=FA
49 48 oveq2d LSpanSx=AT𝑠FLSpanSx=T𝑠FA
50 49 eleq1d LSpanSx=AT𝑠FLSpanSxLFinGenT𝑠FALFinGen
51 47 50 syl5ibcom φx𝒫BaseSFinLSpanSx=AT𝑠FALFinGen
52 51 rexlimdva φx𝒫BaseSFinLSpanSx=AT𝑠FALFinGen
53 13 52 mpd φT𝑠FALFinGen
54 1 53 eqeltrid φYLFinGen