Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmhmfgima.y | |
|
lmhmfgima.x | |
||
lmhmfgima.u | |
||
lmhmfgima.xf | |
||
lmhmfgima.a | |
||
lmhmfgima.f | |
||
Assertion | lmhmfgima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmfgima.y | |
|
2 | lmhmfgima.x | |
|
3 | lmhmfgima.u | |
|
4 | lmhmfgima.xf | |
|
5 | lmhmfgima.a | |
|
6 | lmhmfgima.f | |
|
7 | lmhmlmod1 | |
|
8 | 6 7 | syl | |
9 | eqid | |
|
10 | eqid | |
|
11 | 2 3 9 10 | islssfg2 | |
12 | 8 5 11 | syl2anc | |
13 | 4 12 | mpbid | |
14 | inss1 | |
|
15 | 14 | sseli | |
16 | 15 | elpwid | |
17 | eqid | |
|
18 | 10 9 17 | lmhmlsp | |
19 | 6 16 18 | syl2an | |
20 | 19 | oveq2d | |
21 | lmhmlmod2 | |
|
22 | 6 21 | syl | |
23 | 22 | adantr | |
24 | imassrn | |
|
25 | eqid | |
|
26 | 10 25 | lmhmf | |
27 | 6 26 | syl | |
28 | 27 | frnd | |
29 | 24 28 | sstrid | |
30 | 29 | adantr | |
31 | inss2 | |
|
32 | 31 | sseli | |
33 | 32 | adantl | |
34 | 27 | ffund | |
35 | 34 | adantr | |
36 | 16 | adantl | |
37 | 27 | fdmd | |
38 | 37 | adantr | |
39 | 36 38 | sseqtrrd | |
40 | fores | |
|
41 | 35 39 40 | syl2anc | |
42 | fofi | |
|
43 | 33 41 42 | syl2anc | |
44 | eqid | |
|
45 | 17 25 44 | islssfgi | |
46 | 23 30 43 45 | syl3anc | |
47 | 20 46 | eqeltrd | |
48 | imaeq2 | |
|
49 | 48 | oveq2d | |
50 | 49 | eleq1d | |
51 | 47 50 | syl5ibcom | |
52 | 51 | rexlimdva | |
53 | 13 52 | mpd | |
54 | 1 53 | eqeltrid | |