| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmvsca.v |
|
| 2 |
|
lmhmvsca.s |
|
| 3 |
|
lmhmvsca.j |
|
| 4 |
|
lmhmvsca.k |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
lmhmlmod1 |
|
| 9 |
8
|
3ad2ant3 |
|
| 10 |
|
lmhmlmod2 |
|
| 11 |
10
|
3ad2ant3 |
|
| 12 |
6 3
|
lmhmsca |
|
| 13 |
12
|
3ad2ant3 |
|
| 14 |
1
|
fvexi |
|
| 15 |
14
|
a1i |
|
| 16 |
|
simpl2 |
|
| 17 |
|
eqid |
|
| 18 |
1 17
|
lmhmf |
|
| 19 |
18
|
3ad2ant3 |
|
| 20 |
19
|
ffvelcdmda |
|
| 21 |
|
fconstmpt |
|
| 22 |
21
|
a1i |
|
| 23 |
19
|
feqmptd |
|
| 24 |
15 16 20 22 23
|
offval2 |
|
| 25 |
|
eqidd |
|
| 26 |
|
oveq2 |
|
| 27 |
20 23 25 26
|
fmptco |
|
| 28 |
24 27
|
eqtr4d |
|
| 29 |
|
simp2 |
|
| 30 |
17 3 2 4
|
lmodvsghm |
|
| 31 |
11 29 30
|
syl2anc |
|
| 32 |
|
lmghm |
|
| 33 |
32
|
3ad2ant3 |
|
| 34 |
|
ghmco |
|
| 35 |
31 33 34
|
syl2anc |
|
| 36 |
28 35
|
eqeltrd |
|
| 37 |
|
simpl1 |
|
| 38 |
|
simpl2 |
|
| 39 |
|
simprl |
|
| 40 |
13
|
fveq2d |
|
| 41 |
4 40
|
eqtrid |
|
| 42 |
41
|
adantr |
|
| 43 |
39 42
|
eleqtrrd |
|
| 44 |
|
eqid |
|
| 45 |
4 44
|
crngcom |
|
| 46 |
37 38 43 45
|
syl3anc |
|
| 47 |
46
|
oveq1d |
|
| 48 |
11
|
adantr |
|
| 49 |
19
|
adantr |
|
| 50 |
|
simprr |
|
| 51 |
49 50
|
ffvelcdmd |
|
| 52 |
17 3 2 4 44
|
lmodvsass |
|
| 53 |
48 38 43 51 52
|
syl13anc |
|
| 54 |
17 3 2 4 44
|
lmodvsass |
|
| 55 |
48 43 38 51 54
|
syl13anc |
|
| 56 |
47 53 55
|
3eqtr3d |
|
| 57 |
1 6 5 7
|
lmodvscl |
|
| 58 |
57
|
3expb |
|
| 59 |
9 58
|
sylan |
|
| 60 |
14
|
a1i |
|
| 61 |
19
|
ffnd |
|
| 62 |
61
|
adantr |
|
| 63 |
6 7 1 5 2
|
lmhmlin |
|
| 64 |
63
|
3expb |
|
| 65 |
64
|
3ad2antl3 |
|
| 66 |
65
|
adantr |
|
| 67 |
60 38 62 66
|
ofc1 |
|
| 68 |
59 67
|
mpdan |
|
| 69 |
|
eqidd |
|
| 70 |
60 38 62 69
|
ofc1 |
|
| 71 |
50 70
|
mpdan |
|
| 72 |
71
|
oveq2d |
|
| 73 |
56 68 72
|
3eqtr4d |
|
| 74 |
1 5 2 6 3 7 9 11 13 36 73
|
islmhmd |
|