Metamath Proof Explorer


Theorem lmle

Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007) (Proof shortened by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmle.1 Z=M
lmle.3 J=MetOpenD
lmle.4 φD∞MetX
lmle.6 φM
lmle.7 φFtJP
lmle.8 φQX
lmle.9 φR*
lmle.10 φkZQDFkR
Assertion lmle φQDPR

Proof

Step Hyp Ref Expression
1 lmle.1 Z=M
2 lmle.3 J=MetOpenD
3 lmle.4 φD∞MetX
4 lmle.6 φM
5 lmle.7 φFtJP
6 lmle.8 φQX
7 lmle.9 φR*
8 lmle.10 φkZQDFkR
9 2 mopntopon D∞MetXJTopOnX
10 3 9 syl φJTopOnX
11 lmrel ReltJ
12 releldm ReltJFtJPFdomtJ
13 11 5 12 sylancr φFdomtJ
14 1 10 4 13 lmff φjZFj:jX
15 eqid j=j
16 10 adantr φjZFj:jXJTopOnX
17 simprl φjZFj:jXjZ
18 17 1 eleqtrdi φjZFj:jXjM
19 eluzelz jMj
20 18 19 syl φjZFj:jXj
21 5 adantr φjZFj:jXFtJP
22 oveq2 x=FkQDx=QDFk
23 22 breq1d x=FkQDxRQDFkR
24 fvres kjFjk=Fk
25 24 adantl φjZFj:jXkjFjk=Fk
26 simprr φjZFj:jXFj:jX
27 26 ffvelcdmda φjZFj:jXkjFjkX
28 25 27 eqeltrrd φjZFj:jXkjFkX
29 1 uztrn2 jZkjkZ
30 17 29 sylan φjZFj:jXkjkZ
31 8 adantlr φjZFj:jXkZQDFkR
32 30 31 syldan φjZFj:jXkjQDFkR
33 23 28 32 elrabd φjZFj:jXkjFkxX|QDxR
34 eqid xX|QDxR=xX|QDxR
35 2 34 blcld D∞MetXQXR*xX|QDxRClsdJ
36 3 6 7 35 syl3anc φxX|QDxRClsdJ
37 36 adantr φjZFj:jXxX|QDxRClsdJ
38 15 16 20 21 33 37 lmcld φjZFj:jXPxX|QDxR
39 14 38 rexlimddv φPxX|QDxR
40 oveq2 x=PQDx=QDP
41 40 breq1d x=PQDxRQDPR
42 41 elrab PxX|QDxRPXQDPR
43 42 simprbi PxX|QDxRQDPR
44 39 43 syl φQDPR