Metamath Proof Explorer


Theorem lmodvsmdi

Description: Multiple distributive law for scalar product (left-distributivity). (Contributed by AV, 5-Sep-2019)

Ref Expression
Hypotheses lmodvsmdi.v V=BaseW
lmodvsmdi.f F=ScalarW
lmodvsmdi.s ·˙=W
lmodvsmdi.k K=BaseF
lmodvsmdi.p ×˙=W
lmodvsmdi.e E=F
Assertion lmodvsmdi WLModRKN0XVR·˙N×˙X=NER·˙X

Proof

Step Hyp Ref Expression
1 lmodvsmdi.v V=BaseW
2 lmodvsmdi.f F=ScalarW
3 lmodvsmdi.s ·˙=W
4 lmodvsmdi.k K=BaseF
5 lmodvsmdi.p ×˙=W
6 lmodvsmdi.e E=F
7 oveq1 x=0x×˙X=0×˙X
8 7 oveq2d x=0R·˙x×˙X=R·˙0×˙X
9 oveq1 x=0xER=0ER
10 9 oveq1d x=0xER·˙X=0ER·˙X
11 8 10 eqeq12d x=0R·˙x×˙X=xER·˙XR·˙0×˙X=0ER·˙X
12 11 imbi2d x=0RKXVWLModR·˙x×˙X=xER·˙XRKXVWLModR·˙0×˙X=0ER·˙X
13 oveq1 x=yx×˙X=y×˙X
14 13 oveq2d x=yR·˙x×˙X=R·˙y×˙X
15 oveq1 x=yxER=yER
16 15 oveq1d x=yxER·˙X=yER·˙X
17 14 16 eqeq12d x=yR·˙x×˙X=xER·˙XR·˙y×˙X=yER·˙X
18 17 imbi2d x=yRKXVWLModR·˙x×˙X=xER·˙XRKXVWLModR·˙y×˙X=yER·˙X
19 oveq1 x=y+1x×˙X=y+1×˙X
20 19 oveq2d x=y+1R·˙x×˙X=R·˙y+1×˙X
21 oveq1 x=y+1xER=y+1ER
22 21 oveq1d x=y+1xER·˙X=y+1ER·˙X
23 20 22 eqeq12d x=y+1R·˙x×˙X=xER·˙XR·˙y+1×˙X=y+1ER·˙X
24 23 imbi2d x=y+1RKXVWLModR·˙x×˙X=xER·˙XRKXVWLModR·˙y+1×˙X=y+1ER·˙X
25 oveq1 x=Nx×˙X=N×˙X
26 25 oveq2d x=NR·˙x×˙X=R·˙N×˙X
27 oveq1 x=NxER=NER
28 27 oveq1d x=NxER·˙X=NER·˙X
29 26 28 eqeq12d x=NR·˙x×˙X=xER·˙XR·˙N×˙X=NER·˙X
30 29 imbi2d x=NRKXVWLModR·˙x×˙X=xER·˙XRKXVWLModR·˙N×˙X=NER·˙X
31 simpr RKXVXV
32 31 adantr RKXVWLModXV
33 eqid 0W=0W
34 1 33 5 mulg0 XV0×˙X=0W
35 32 34 syl RKXVWLMod0×˙X=0W
36 35 oveq2d RKXVWLModR·˙0×˙X=R·˙0W
37 simpl RKXVRK
38 37 anim1i RKXVWLModRKWLMod
39 38 ancomd RKXVWLModWLModRK
40 2 3 4 33 lmodvs0 WLModRKR·˙0W=0W
41 39 40 syl RKXVWLModR·˙0W=0W
42 31 anim1i RKXVWLModXVWLMod
43 42 ancomd RKXVWLModWLModXV
44 eqid 0F=0F
45 1 2 3 44 33 lmod0vs WLModXV0F·˙X=0W
46 43 45 syl RKXVWLMod0F·˙X=0W
47 37 adantr RKXVWLModRK
48 4 44 6 mulg0 RK0ER=0F
49 48 eqcomd RK0F=0ER
50 47 49 syl RKXVWLMod0F=0ER
51 50 oveq1d RKXVWLMod0F·˙X=0ER·˙X
52 41 46 51 3eqtr2d RKXVWLModR·˙0W=0ER·˙X
53 36 52 eqtrd RKXVWLModR·˙0×˙X=0ER·˙X
54 lmodgrp WLModWGrp
55 54 grpmndd WLModWMnd
56 55 ad2antll y0RKXVWLModWMnd
57 simpl y0RKXVWLMody0
58 32 adantl y0RKXVWLModXV
59 eqid +W=+W
60 1 5 59 mulgnn0p1 WMndy0XVy+1×˙X=y×˙X+WX
61 56 57 58 60 syl3anc y0RKXVWLMody+1×˙X=y×˙X+WX
62 61 oveq2d y0RKXVWLModR·˙y+1×˙X=R·˙y×˙X+WX
63 simpr RKXVWLModWLMod
64 63 adantl y0RKXVWLModWLMod
65 simprll y0RKXVWLModRK
66 1 5 56 57 58 mulgnn0cld y0RKXVWLMody×˙XV
67 1 59 2 3 4 lmodvsdi WLModRKy×˙XVXVR·˙y×˙X+WX=R·˙y×˙X+WR·˙X
68 64 65 66 58 67 syl13anc y0RKXVWLModR·˙y×˙X+WX=R·˙y×˙X+WR·˙X
69 62 68 eqtrd y0RKXVWLModR·˙y+1×˙X=R·˙y×˙X+WR·˙X
70 oveq1 R·˙y×˙X=yER·˙XR·˙y×˙X+WR·˙X=yER·˙X+WR·˙X
71 69 70 sylan9eq y0RKXVWLModR·˙y×˙X=yER·˙XR·˙y+1×˙X=yER·˙X+WR·˙X
72 2 lmodfgrp WLModFGrp
73 72 grpmndd WLModFMnd
74 73 ad2antll y0RKXVWLModFMnd
75 4 6 74 57 65 mulgnn0cld y0RKXVWLModyERK
76 eqid +F=+F
77 1 59 2 3 4 76 lmodvsdir WLModyERKRKXVyER+FR·˙X=yER·˙X+WR·˙X
78 64 75 65 58 77 syl13anc y0RKXVWLModyER+FR·˙X=yER·˙X+WR·˙X
79 4 6 76 mulgnn0p1 FMndy0RKy+1ER=yER+FR
80 74 57 65 79 syl3anc y0RKXVWLMody+1ER=yER+FR
81 80 eqcomd y0RKXVWLModyER+FR=y+1ER
82 81 oveq1d y0RKXVWLModyER+FR·˙X=y+1ER·˙X
83 78 82 eqtr3d y0RKXVWLModyER·˙X+WR·˙X=y+1ER·˙X
84 83 adantr y0RKXVWLModR·˙y×˙X=yER·˙XyER·˙X+WR·˙X=y+1ER·˙X
85 71 84 eqtrd y0RKXVWLModR·˙y×˙X=yER·˙XR·˙y+1×˙X=y+1ER·˙X
86 85 exp31 y0RKXVWLModR·˙y×˙X=yER·˙XR·˙y+1×˙X=y+1ER·˙X
87 86 a2d y0RKXVWLModR·˙y×˙X=yER·˙XRKXVWLModR·˙y+1×˙X=y+1ER·˙X
88 12 18 24 30 53 87 nn0ind N0RKXVWLModR·˙N×˙X=NER·˙X
89 88 exp4c N0RKXVWLModR·˙N×˙X=NER·˙X
90 89 com12 RKN0XVWLModR·˙N×˙X=NER·˙X
91 90 3imp RKN0XVWLModR·˙N×˙X=NER·˙X
92 91 impcom WLModRKN0XVR·˙N×˙X=NER·˙X