| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvsmdi.v |
|
| 2 |
|
lmodvsmdi.f |
|
| 3 |
|
lmodvsmdi.s |
|
| 4 |
|
lmodvsmdi.k |
|
| 5 |
|
lmodvsmdi.p |
|
| 6 |
|
lmodvsmdi.e |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
oveq2d |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
oveq1d |
|
| 11 |
8 10
|
eqeq12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
oveq1d |
|
| 17 |
14 16
|
eqeq12d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
|
oveq1 |
|
| 20 |
19
|
oveq2d |
|
| 21 |
|
oveq1 |
|
| 22 |
21
|
oveq1d |
|
| 23 |
20 22
|
eqeq12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
|
oveq1 |
|
| 26 |
25
|
oveq2d |
|
| 27 |
|
oveq1 |
|
| 28 |
27
|
oveq1d |
|
| 29 |
26 28
|
eqeq12d |
|
| 30 |
29
|
imbi2d |
|
| 31 |
|
simpr |
|
| 32 |
31
|
adantr |
|
| 33 |
|
eqid |
|
| 34 |
1 33 5
|
mulg0 |
|
| 35 |
32 34
|
syl |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
simpl |
|
| 38 |
37
|
anim1i |
|
| 39 |
38
|
ancomd |
|
| 40 |
2 3 4 33
|
lmodvs0 |
|
| 41 |
39 40
|
syl |
|
| 42 |
31
|
anim1i |
|
| 43 |
42
|
ancomd |
|
| 44 |
|
eqid |
|
| 45 |
1 2 3 44 33
|
lmod0vs |
|
| 46 |
43 45
|
syl |
|
| 47 |
37
|
adantr |
|
| 48 |
4 44 6
|
mulg0 |
|
| 49 |
48
|
eqcomd |
|
| 50 |
47 49
|
syl |
|
| 51 |
50
|
oveq1d |
|
| 52 |
41 46 51
|
3eqtr2d |
|
| 53 |
36 52
|
eqtrd |
|
| 54 |
|
lmodgrp |
|
| 55 |
54
|
grpmndd |
|
| 56 |
55
|
ad2antll |
|
| 57 |
|
simpl |
|
| 58 |
32
|
adantl |
|
| 59 |
|
eqid |
|
| 60 |
1 5 59
|
mulgnn0p1 |
|
| 61 |
56 57 58 60
|
syl3anc |
|
| 62 |
61
|
oveq2d |
|
| 63 |
|
simpr |
|
| 64 |
63
|
adantl |
|
| 65 |
|
simprll |
|
| 66 |
1 5 56 57 58
|
mulgnn0cld |
|
| 67 |
1 59 2 3 4
|
lmodvsdi |
|
| 68 |
64 65 66 58 67
|
syl13anc |
|
| 69 |
62 68
|
eqtrd |
|
| 70 |
|
oveq1 |
|
| 71 |
69 70
|
sylan9eq |
|
| 72 |
2
|
lmodfgrp |
|
| 73 |
72
|
grpmndd |
|
| 74 |
73
|
ad2antll |
|
| 75 |
4 6 74 57 65
|
mulgnn0cld |
|
| 76 |
|
eqid |
|
| 77 |
1 59 2 3 4 76
|
lmodvsdir |
|
| 78 |
64 75 65 58 77
|
syl13anc |
|
| 79 |
4 6 76
|
mulgnn0p1 |
|
| 80 |
74 57 65 79
|
syl3anc |
|
| 81 |
80
|
eqcomd |
|
| 82 |
81
|
oveq1d |
|
| 83 |
78 82
|
eqtr3d |
|
| 84 |
83
|
adantr |
|
| 85 |
71 84
|
eqtrd |
|
| 86 |
85
|
exp31 |
|
| 87 |
86
|
a2d |
|
| 88 |
12 18 24 30 53 87
|
nn0ind |
|
| 89 |
88
|
exp4c |
|
| 90 |
89
|
com12 |
|
| 91 |
90
|
3imp |
|
| 92 |
91
|
impcom |
|