Metamath Proof Explorer


Theorem lpcls

Description: The limit points of the closure of a subset are the same as the limit points of the set in a T_1 space. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis lpcls.1 X=J
Assertion lpcls JFreSXlimPtJclsJS=limPtJS

Proof

Step Hyp Ref Expression
1 lpcls.1 X=J
2 t1top JFreJTop
3 1 clsss3 JTopSXclsJSX
4 3 ssdifssd JTopSXclsJSxX
5 1 clsss3 JTopclsJSxXclsJclsJSxX
6 4 5 syldan JTopSXclsJclsJSxX
7 2 6 sylan JFreSXclsJclsJSxX
8 7 sseld JFreSXxclsJclsJSxxX
9 ssdifss SXSxX
10 1 clscld JTopSxXclsJSxClsdJ
11 2 9 10 syl2an JFreSXclsJSxClsdJ
12 11 adantr JFreSXxXclsJSxClsdJ
13 1 t1sncld JFrexXxClsdJ
14 13 adantlr JFreSXxXxClsdJ
15 uncld xClsdJclsJSxClsdJxclsJSxClsdJ
16 14 12 15 syl2anc JFreSXxXxclsJSxClsdJ
17 1 sscls JTopSxXSxclsJSx
18 2 9 17 syl2an JFreSXSxclsJSx
19 ssundif SxclsJSxSxclsJSx
20 18 19 sylibr JFreSXSxclsJSx
21 20 adantr JFreSXxXSxclsJSx
22 1 clsss2 xclsJSxClsdJSxclsJSxclsJSxclsJSx
23 16 21 22 syl2anc JFreSXxXclsJSxclsJSx
24 ssundif clsJSxclsJSxclsJSxclsJSx
25 23 24 sylib JFreSXxXclsJSxclsJSx
26 1 clsss2 clsJSxClsdJclsJSxclsJSxclsJclsJSxclsJSx
27 12 25 26 syl2anc JFreSXxXclsJclsJSxclsJSx
28 27 sseld JFreSXxXxclsJclsJSxxclsJSx
29 28 ex JFreSXxXxclsJclsJSxxclsJSx
30 29 com23 JFreSXxclsJclsJSxxXxclsJSx
31 8 30 mpdd JFreSXxclsJclsJSxxclsJSx
32 2 adantr JFreSXJTop
33 2 3 sylan JFreSXclsJSX
34 33 ssdifssd JFreSXclsJSxX
35 1 sscls JTopSXSclsJS
36 2 35 sylan JFreSXSclsJS
37 36 ssdifd JFreSXSxclsJSx
38 1 clsss JTopclsJSxXSxclsJSxclsJSxclsJclsJSx
39 32 34 37 38 syl3anc JFreSXclsJSxclsJclsJSx
40 39 sseld JFreSXxclsJSxxclsJclsJSx
41 31 40 impbid JFreSXxclsJclsJSxxclsJSx
42 1 islp JTopclsJSXxlimPtJclsJSxclsJclsJSx
43 3 42 syldan JTopSXxlimPtJclsJSxclsJclsJSx
44 2 43 sylan JFreSXxlimPtJclsJSxclsJclsJSx
45 1 islp JTopSXxlimPtJSxclsJSx
46 2 45 sylan JFreSXxlimPtJSxclsJSx
47 41 44 46 3bitr4d JFreSXxlimPtJclsJSxlimPtJS
48 47 eqrdv JFreSXlimPtJclsJS=limPtJS