Description: If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025) (Revised by SN, 23-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lring.b | |
|
lring.u | |
||
lring.p | |
||
lring.l | No typesetting found for |- ( ph -> R e. LRing ) with typecode |- | ||
lring.s | |
||
lring.x | |
||
lring.y | |
||
Assertion | lringuplu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lring.b | |
|
2 | lring.u | |
|
3 | lring.p | |
|
4 | lring.l | Could not format ( ph -> R e. LRing ) : No typesetting found for |- ( ph -> R e. LRing ) with typecode |- | |
5 | lring.s | |
|
6 | lring.x | |
|
7 | lring.y | |
|
8 | lringring | Could not format ( R e. LRing -> R e. Ring ) : No typesetting found for |- ( R e. LRing -> R e. Ring ) with typecode |- | |
9 | 4 8 | syl | |
10 | 6 1 | eleqtrd | |
11 | 5 2 | eleqtrd | |
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 12 13 14 15 | dvrcan1 | |
17 | 9 10 11 16 | syl3anc | |
18 | 17 | adantr | |
19 | 9 | adantr | |
20 | simpr | |
|
21 | 11 | adantr | |
22 | 13 15 | unitmulcl | |
23 | 19 20 21 22 | syl3anc | |
24 | 18 23 | eqeltrrd | |
25 | 2 | adantr | |
26 | 24 25 | eleqtrrd | |
27 | 26 | orcd | |
28 | 7 1 | eleqtrd | |
29 | 12 13 14 15 | dvrcan1 | |
30 | 9 28 11 29 | syl3anc | |
31 | 30 | adantr | |
32 | 9 | adantr | |
33 | simpr | |
|
34 | 11 | adantr | |
35 | 13 15 | unitmulcl | |
36 | 32 33 34 35 | syl3anc | |
37 | 31 36 | eqeltrrd | |
38 | 2 | adantr | |
39 | 37 38 | eleqtrrd | |
40 | 39 | olcd | |
41 | eqid | |
|
42 | 12 13 41 14 | dvrdir | |
43 | 9 10 28 11 42 | syl13anc | |
44 | 3 | eqcomd | |
45 | 44 | oveqd | |
46 | 9 | ringgrpd | |
47 | 12 41 46 10 28 | grpcld | |
48 | eqid | |
|
49 | 12 13 14 48 | dvreq1 | |
50 | 9 47 11 49 | syl3anc | |
51 | 45 50 | mpbird | |
52 | 43 51 | eqtr3d | |
53 | oveq2 | |
|
54 | 53 | eqeq1d | |
55 | eleq1 | |
|
56 | 55 | orbi2d | |
57 | 54 56 | imbi12d | |
58 | oveq1 | |
|
59 | 58 | eqeq1d | |
60 | eleq1 | |
|
61 | 60 | orbi1d | |
62 | 59 61 | imbi12d | |
63 | 62 | ralbidv | |
64 | 12 41 48 13 | islring | Could not format ( R e. LRing <-> ( R e. NzRing /\ A. u e. ( Base ` R ) A. v e. ( Base ` R ) ( ( u ( +g ` R ) v ) = ( 1r ` R ) -> ( u e. ( Unit ` R ) \/ v e. ( Unit ` R ) ) ) ) ) : No typesetting found for |- ( R e. LRing <-> ( R e. NzRing /\ A. u e. ( Base ` R ) A. v e. ( Base ` R ) ( ( u ( +g ` R ) v ) = ( 1r ` R ) -> ( u e. ( Unit ` R ) \/ v e. ( Unit ` R ) ) ) ) ) with typecode |- |
65 | 4 64 | sylib | |
66 | 65 | simprd | |
67 | 12 13 14 | dvrcl | |
68 | 9 10 11 67 | syl3anc | |
69 | 63 66 68 | rspcdva | |
70 | 12 13 14 | dvrcl | |
71 | 9 28 11 70 | syl3anc | |
72 | 57 69 71 | rspcdva | |
73 | 52 72 | mpd | |
74 | 27 40 73 | mpjaodan | |