Metamath Proof Explorer


Theorem lsatexch

Description: The atom exchange property. Proposition 1(i) of Kalmbach p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. ( atexch analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatexch.s S=LSubSpW
lsatexch.p ˙=LSSumW
lsatexch.o 0˙=0W
lsatexch.a A=LSAtomsW
lsatexch.w φWLVec
lsatexch.u φUS
lsatexch.q φQA
lsatexch.r φRA
lsatexch.l φQU˙R
lsatexch.z φUQ=0˙
Assertion lsatexch φRU˙Q

Proof

Step Hyp Ref Expression
1 lsatexch.s S=LSubSpW
2 lsatexch.p ˙=LSSumW
3 lsatexch.o 0˙=0W
4 lsatexch.a A=LSAtomsW
5 lsatexch.w φWLVec
6 lsatexch.u φUS
7 lsatexch.q φQA
8 lsatexch.r φRA
9 lsatexch.l φQU˙R
10 lsatexch.z φUQ=0˙
11 lveclmod WLVecWLMod
12 5 11 syl φWLMod
13 1 lsssssubg WLModSSubGrpW
14 12 13 syl φSSubGrpW
15 14 6 sseldd φUSubGrpW
16 1 4 12 8 lsatlssel φRS
17 14 16 sseldd φRSubGrpW
18 2 lsmub2 USubGrpWRSubGrpWRU˙R
19 15 17 18 syl2anc φRU˙R
20 eqid LW=LW
21 1 2 lsmcl WLModUSRSU˙RS
22 12 6 16 21 syl3anc φU˙RS
23 1 4 12 7 lsatlssel φQS
24 1 2 lsmcl WLModUSQSU˙QS
25 12 6 23 24 syl3anc φU˙QS
26 1 2 3 4 20 5 6 7 lcvp φUQ=0˙ULWU˙Q
27 10 26 mpbid φULWU˙Q
28 1 20 5 6 25 27 lcvpss φUU˙Q
29 2 lsmub1 USubGrpWRSubGrpWUU˙R
30 15 17 29 syl2anc φUU˙R
31 14 23 sseldd φQSubGrpW
32 14 22 sseldd φU˙RSubGrpW
33 2 lsmlub USubGrpWQSubGrpWU˙RSubGrpWUU˙RQU˙RU˙QU˙R
34 15 31 32 33 syl3anc φUU˙RQU˙RU˙QU˙R
35 30 9 34 mpbi2and φU˙QU˙R
36 28 35 psssstrd φUU˙R
37 1 2 4 20 5 6 8 lcv2 φUU˙RULWU˙R
38 36 37 mpbid φULWU˙R
39 1 20 5 6 22 25 38 28 35 lcvnbtwn2 φU˙Q=U˙R
40 19 39 sseqtrrd φRU˙Q