| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nr |
|
| 2 |
|
breq1 |
|
| 3 |
|
eqeq1 |
|
| 4 |
|
breq2 |
|
| 5 |
3 4
|
orbi12d |
|
| 6 |
5
|
notbid |
|
| 7 |
2 6
|
bibi12d |
|
| 8 |
|
breq2 |
|
| 9 |
|
eqeq2 |
|
| 10 |
|
breq1 |
|
| 11 |
9 10
|
orbi12d |
|
| 12 |
11
|
notbid |
|
| 13 |
8 12
|
bibi12d |
|
| 14 |
|
ltsrpr |
|
| 15 |
|
addclpr |
|
| 16 |
|
addclpr |
|
| 17 |
|
ltsopr |
|
| 18 |
|
sotric |
|
| 19 |
17 18
|
mpan |
|
| 20 |
15 16 19
|
syl2an |
|
| 21 |
20
|
an42s |
|
| 22 |
|
enreceq |
|
| 23 |
|
ltsrpr |
|
| 24 |
|
addcompr |
|
| 25 |
|
addcompr |
|
| 26 |
24 25
|
breq12i |
|
| 27 |
23 26
|
bitri |
|
| 28 |
27
|
a1i |
|
| 29 |
22 28
|
orbi12d |
|
| 30 |
29
|
notbid |
|
| 31 |
21 30
|
bitr4d |
|
| 32 |
14 31
|
bitrid |
|
| 33 |
1 7 13 32
|
2ecoptocl |
|
| 34 |
2
|
anbi1d |
|
| 35 |
|
breq1 |
|
| 36 |
34 35
|
imbi12d |
|
| 37 |
|
breq1 |
|
| 38 |
8 37
|
anbi12d |
|
| 39 |
38
|
imbi1d |
|
| 40 |
|
breq2 |
|
| 41 |
40
|
anbi2d |
|
| 42 |
|
breq2 |
|
| 43 |
41 42
|
imbi12d |
|
| 44 |
|
ovex |
|
| 45 |
|
ovex |
|
| 46 |
|
ltapr |
|
| 47 |
|
vex |
|
| 48 |
|
addcompr |
|
| 49 |
44 45 46 47 48
|
caovord2 |
|
| 50 |
|
addasspr |
|
| 51 |
|
addasspr |
|
| 52 |
50 51
|
breq12i |
|
| 53 |
49 52
|
bitrdi |
|
| 54 |
14 53
|
bitrid |
|
| 55 |
|
ltsrpr |
|
| 56 |
|
ltapr |
|
| 57 |
55 56
|
bitrid |
|
| 58 |
54 57
|
bi2anan9r |
|
| 59 |
|
ltrelpr |
|
| 60 |
17 59
|
sotri |
|
| 61 |
|
dmplp |
|
| 62 |
|
0npr |
|
| 63 |
|
ltapr |
|
| 64 |
61 59 62 63
|
ndmovordi |
|
| 65 |
|
vex |
|
| 66 |
|
vex |
|
| 67 |
|
addasspr |
|
| 68 |
65 66 47 48 67
|
caov12 |
|
| 69 |
|
vex |
|
| 70 |
|
vex |
|
| 71 |
69 66 70 48 67
|
caov12 |
|
| 72 |
68 71
|
breq12i |
|
| 73 |
|
ltsrpr |
|
| 74 |
64 72 73
|
3imtr4i |
|
| 75 |
60 74
|
syl |
|
| 76 |
58 75
|
biimtrdi |
|
| 77 |
76
|
ad2ant2l |
|
| 78 |
77
|
3adant2 |
|
| 79 |
1 36 39 43 78
|
3ecoptocl |
|
| 80 |
33 79
|
isso2i |
|