Description: Lemma for lublecl and lubid . (Contributed by NM, 8-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lublecl.b | |
|
lublecl.l | |
||
lublecl.u | |
||
lublecl.k | |
||
lublecl.x | |
||
Assertion | lublecllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lublecl.b | |
|
2 | lublecl.l | |
|
3 | lublecl.u | |
|
4 | lublecl.k | |
|
5 | lublecl.x | |
|
6 | breq1 | |
|
7 | 6 | ralrab | |
8 | 6 | ralrab | |
9 | 8 | imbi1i | |
10 | 9 | ralbii | |
11 | 7 10 | anbi12i | |
12 | 1 2 | posref | |
13 | 4 5 12 | syl2anc | |
14 | breq1 | |
|
15 | breq1 | |
|
16 | 14 15 | imbi12d | |
17 | 16 | rspcva | |
18 | 13 17 | syl5com | |
19 | 5 18 | mpand | |
20 | 19 | adantr | |
21 | idd | |
|
22 | 21 | rgen | |
23 | breq2 | |
|
24 | 23 | imbi2d | |
25 | 24 | ralbidv | |
26 | breq2 | |
|
27 | 25 26 | imbi12d | |
28 | 27 | rspcv | |
29 | 5 28 | syl | |
30 | 22 29 | mpii | |
31 | 30 | adantr | |
32 | 4 | adantr | |
33 | simpr | |
|
34 | 5 | adantr | |
35 | 1 2 | posasymb | |
36 | 32 33 34 35 | syl3anc | |
37 | 36 | biimpd | |
38 | 37 | ancomsd | |
39 | 20 31 38 | syl2and | |
40 | breq2 | |
|
41 | 40 | biimprd | |
42 | 41 | ralrimivw | |
43 | 42 | adantl | |
44 | 5 | adantr | |
45 | breq1 | |
|
46 | 14 45 | imbi12d | |
47 | 46 | rspcva | |
48 | pm5.5 | |
|
49 | 13 48 | syl | |
50 | breq1 | |
|
51 | 50 | bicomd | |
52 | 49 51 | sylan9bb | |
53 | 47 52 | imbitrid | |
54 | 44 53 | mpand | |
55 | 54 | ralrimivw | |
56 | 55 | adantlr | |
57 | 43 56 | jca | |
58 | 57 | ex | |
59 | 39 58 | impbid | |
60 | 11 59 | bitrid | |