Metamath Proof Explorer


Theorem lublecllem

Description: Lemma for lublecl and lubid . (Contributed by NM, 8-Sep-2018)

Ref Expression
Hypotheses lublecl.b B=BaseK
lublecl.l ˙=K
lublecl.u U=lubK
lublecl.k φKPoset
lublecl.x φXB
Assertion lublecllem φxBzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙wx=X

Proof

Step Hyp Ref Expression
1 lublecl.b B=BaseK
2 lublecl.l ˙=K
3 lublecl.u U=lubK
4 lublecl.k φKPoset
5 lublecl.x φXB
6 breq1 y=zy˙Xz˙X
7 6 ralrab zyB|y˙Xz˙xzBz˙Xz˙x
8 6 ralrab zyB|y˙Xz˙wzBz˙Xz˙w
9 8 imbi1i zyB|y˙Xz˙wx˙wzBz˙Xz˙wx˙w
10 9 ralbii wBzyB|y˙Xz˙wx˙wwBzBz˙Xz˙wx˙w
11 7 10 anbi12i zyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙wzBz˙Xz˙xwBzBz˙Xz˙wx˙w
12 1 2 posref KPosetXBX˙X
13 4 5 12 syl2anc φX˙X
14 breq1 z=Xz˙XX˙X
15 breq1 z=Xz˙xX˙x
16 14 15 imbi12d z=Xz˙Xz˙xX˙XX˙x
17 16 rspcva XBzBz˙Xz˙xX˙XX˙x
18 13 17 syl5com φXBzBz˙Xz˙xX˙x
19 5 18 mpand φzBz˙Xz˙xX˙x
20 19 adantr φxBzBz˙Xz˙xX˙x
21 idd zBz˙Xz˙X
22 21 rgen zBz˙Xz˙X
23 breq2 w=Xz˙wz˙X
24 23 imbi2d w=Xz˙Xz˙wz˙Xz˙X
25 24 ralbidv w=XzBz˙Xz˙wzBz˙Xz˙X
26 breq2 w=Xx˙wx˙X
27 25 26 imbi12d w=XzBz˙Xz˙wx˙wzBz˙Xz˙Xx˙X
28 27 rspcv XBwBzBz˙Xz˙wx˙wzBz˙Xz˙Xx˙X
29 5 28 syl φwBzBz˙Xz˙wx˙wzBz˙Xz˙Xx˙X
30 22 29 mpii φwBzBz˙Xz˙wx˙wx˙X
31 30 adantr φxBwBzBz˙Xz˙wx˙wx˙X
32 4 adantr φxBKPoset
33 simpr φxBxB
34 5 adantr φxBXB
35 1 2 posasymb KPosetxBXBx˙XX˙xx=X
36 32 33 34 35 syl3anc φxBx˙XX˙xx=X
37 36 biimpd φxBx˙XX˙xx=X
38 37 ancomsd φxBX˙xx˙Xx=X
39 20 31 38 syl2and φxBzBz˙Xz˙xwBzBz˙Xz˙wx˙wx=X
40 breq2 x=Xz˙xz˙X
41 40 biimprd x=Xz˙Xz˙x
42 41 ralrimivw x=XzBz˙Xz˙x
43 42 adantl φxBx=XzBz˙Xz˙x
44 5 adantr φx=XXB
45 breq1 z=Xz˙wX˙w
46 14 45 imbi12d z=Xz˙Xz˙wX˙XX˙w
47 46 rspcva XBzBz˙Xz˙wX˙XX˙w
48 pm5.5 X˙XX˙XX˙wX˙w
49 13 48 syl φX˙XX˙wX˙w
50 breq1 x=Xx˙wX˙w
51 50 bicomd x=XX˙wx˙w
52 49 51 sylan9bb φx=XX˙XX˙wx˙w
53 47 52 imbitrid φx=XXBzBz˙Xz˙wx˙w
54 44 53 mpand φx=XzBz˙Xz˙wx˙w
55 54 ralrimivw φx=XwBzBz˙Xz˙wx˙w
56 55 adantlr φxBx=XwBzBz˙Xz˙wx˙w
57 43 56 jca φxBx=XzBz˙Xz˙xwBzBz˙Xz˙wx˙w
58 57 ex φxBx=XzBz˙Xz˙xwBzBz˙Xz˙wx˙w
59 39 58 impbid φxBzBz˙Xz˙xwBzBz˙Xz˙wx˙wx=X
60 11 59 bitrid φxBzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙wx=X