| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2cpminvid2lem.s |
|
| 2 |
|
m2cpminvid2lem.p |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
1 2 3 4
|
cpmatelimp |
|
| 6 |
5
|
3impia |
|
| 7 |
6
|
simprd |
|
| 8 |
7
|
adantr |
|
| 9 |
|
fvoveq1 |
|
| 10 |
9
|
fveq1d |
|
| 11 |
10
|
eqeq1d |
|
| 12 |
11
|
ralbidv |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
fveq2d |
|
| 15 |
14
|
fveq1d |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
16
|
ralbidv |
|
| 18 |
12 17
|
rspc2v |
|
| 19 |
18
|
adantl |
|
| 20 |
|
fveqeq2 |
|
| 21 |
20
|
cbvralvw |
|
| 22 |
|
simpl2 |
|
| 23 |
|
eqid |
|
| 24 |
|
simprl |
|
| 25 |
|
simprr |
|
| 26 |
1 2 3 4
|
cpmatpmat |
|
| 27 |
26
|
adantr |
|
| 28 |
3 23 4 24 25 27
|
matecld |
|
| 29 |
|
0nn0 |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
30 23 2 31
|
coe1fvalcl |
|
| 33 |
28 29 32
|
sylancl |
|
| 34 |
22 33
|
jca |
|
| 35 |
34
|
adantr |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
2 36 31 37
|
coe1scl |
|
| 39 |
35 38
|
syl |
|
| 40 |
39
|
fveq1d |
|
| 41 |
|
eqidd |
|
| 42 |
|
eqeq1 |
|
| 43 |
42
|
ifbid |
|
| 44 |
43
|
adantl |
|
| 45 |
|
nnnn0 |
|
| 46 |
45
|
adantl |
|
| 47 |
|
fvex |
|
| 48 |
|
fvex |
|
| 49 |
47 48
|
ifex |
|
| 50 |
49
|
a1i |
|
| 51 |
41 44 46 50
|
fvmptd |
|
| 52 |
|
nnne0 |
|
| 53 |
52
|
neneqd |
|
| 54 |
53
|
adantl |
|
| 55 |
54
|
iffalsed |
|
| 56 |
40 51 55
|
3eqtrd |
|
| 57 |
|
eqcom |
|
| 58 |
57
|
biimpi |
|
| 59 |
56 58
|
sylan9eq |
|
| 60 |
59
|
ex |
|
| 61 |
60
|
ralimdva |
|
| 62 |
61
|
imp |
|
| 63 |
34
|
adantr |
|
| 64 |
2 36 31
|
ply1sclid |
|
| 65 |
64
|
eqcomd |
|
| 66 |
63 65
|
syl |
|
| 67 |
62 66
|
jca |
|
| 68 |
67
|
ex |
|
| 69 |
21 68
|
biimtrid |
|
| 70 |
19 69
|
syld |
|
| 71 |
8 70
|
mpd |
|
| 72 |
|
c0ex |
|
| 73 |
|
fveq2 |
|
| 74 |
|
fveq2 |
|
| 75 |
73 74
|
eqeq12d |
|
| 76 |
75
|
ralunsn |
|
| 77 |
72 76
|
mp1i |
|
| 78 |
71 77
|
mpbird |
|
| 79 |
|
df-n0 |
|
| 80 |
79
|
raleqi |
|
| 81 |
78 80
|
sylibr |
|