Metamath Proof Explorer


Theorem m2detleiblem4

Description: Lemma 4 for m2detleib . (Contributed by AV, 20-Dec-2018) (Proof shortened by AV, 2-Jan-2019)

Ref Expression
Hypotheses m2detleiblem2.n N=12
m2detleiblem2.p P=BaseSymGrpN
m2detleiblem2.a A=NMatR
m2detleiblem2.b B=BaseA
m2detleiblem2.g G=mulGrpR
m2detleiblem3.m ·˙=+G
Assertion m2detleiblem4 RRingQ=1221MBGnNQnMn=2M1·˙1M2

Proof

Step Hyp Ref Expression
1 m2detleiblem2.n N=12
2 m2detleiblem2.p P=BaseSymGrpN
3 m2detleiblem2.a A=NMatR
4 m2detleiblem2.b B=BaseA
5 m2detleiblem2.g G=mulGrpR
6 m2detleiblem3.m ·˙=+G
7 eqid BaseR=BaseR
8 5 7 mgpbas BaseR=BaseG
9 5 fvexi GV
10 9 a1i RRingQ=1221MBGV
11 1ex 1V
12 2nn 2
13 prex 1221V
14 13 prid2 122111221221
15 eqid SymGrpN=SymGrpN
16 15 2 1 symg2bas 1V2P=11221221
17 14 16 eleqtrrid 1V21221P
18 11 12 17 mp2an 1221P
19 eleq1 Q=1221QP1221P
20 18 19 mpbiri Q=1221QP
21 1 oveq1i NMatR=12MatR
22 3 21 eqtri A=12MatR
23 1 fveq2i SymGrpN=SymGrp12
24 23 fveq2i BaseSymGrpN=BaseSymGrp12
25 2 24 eqtri P=BaseSymGrp12
26 22 4 25 matepmcl RRingQPMBn12QnMnBaseR
27 20 26 syl3an2 RRingQ=1221MBn12QnMnBaseR
28 1 mpteq1i nNQnMn=n12QnMn
29 28 fmpt n12QnMnBaseRnNQnMn:12BaseR
30 27 29 sylib RRingQ=1221MBnNQnMn:12BaseR
31 8 6 10 30 gsumpr12val RRingQ=1221MBGnNQnMn=nNQnMn1·˙nNQnMn2
32 11 prid1 112
33 32 1 eleqtrri 1N
34 3 4 2 matepmcl RRingQPMBnNQnMnBaseR
35 20 34 syl3an2 RRingQ=1221MBnNQnMnBaseR
36 fveq2 n=1Qn=Q1
37 id n=1n=1
38 36 37 oveq12d n=1QnMn=Q1M1
39 38 eleq1d n=1QnMnBaseRQ1M1BaseR
40 39 rspcva 1NnNQnMnBaseRQ1M1BaseR
41 33 35 40 sylancr RRingQ=1221MBQ1M1BaseR
42 eqid nNQnMn=nNQnMn
43 38 42 fvmptg 1NQ1M1BaseRnNQnMn1=Q1M1
44 33 41 43 sylancr RRingQ=1221MBnNQnMn1=Q1M1
45 fveq1 Q=1221Q1=12211
46 1ne2 12
47 2ex 2V
48 11 47 fvpr1 1212211=2
49 46 48 ax-mp 12211=2
50 45 49 eqtrdi Q=1221Q1=2
51 50 3ad2ant2 RRingQ=1221MBQ1=2
52 51 oveq1d RRingQ=1221MBQ1M1=2M1
53 44 52 eqtrd RRingQ=1221MBnNQnMn1=2M1
54 47 prid2 212
55 54 1 eleqtrri 2N
56 fveq2 n=2Qn=Q2
57 id n=2n=2
58 56 57 oveq12d n=2QnMn=Q2M2
59 58 eleq1d n=2QnMnBaseRQ2M2BaseR
60 59 rspcva 2NnNQnMnBaseRQ2M2BaseR
61 55 35 60 sylancr RRingQ=1221MBQ2M2BaseR
62 58 42 fvmptg 2NQ2M2BaseRnNQnMn2=Q2M2
63 55 61 62 sylancr RRingQ=1221MBnNQnMn2=Q2M2
64 fveq1 Q=1221Q2=12212
65 47 11 fvpr2 1212212=1
66 46 65 ax-mp 12212=1
67 64 66 eqtrdi Q=1221Q2=1
68 67 3ad2ant2 RRingQ=1221MBQ2=1
69 68 oveq1d RRingQ=1221MBQ2M2=1M2
70 63 69 eqtrd RRingQ=1221MBnNQnMn2=1M2
71 53 70 oveq12d RRingQ=1221MBnNQnMn1·˙nNQnMn2=2M1·˙1M2
72 31 71 eqtrd RRingQ=1221MBGnNQnMn=2M1·˙1M2