Metamath Proof Explorer


Theorem mapdin

Description: Subspace intersection is preserved by the map defined by df-mapd . Part of property (e) in Baer p. 40. (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdin.h H=LHypK
mapdin.m M=mapdKW
mapdin.u U=DVecHKW
mapdin.s S=LSubSpU
mapdin.k φKHLWH
mapdin.x φXS
mapdin.y φYS
Assertion mapdin φMXY=MXMY

Proof

Step Hyp Ref Expression
1 mapdin.h H=LHypK
2 mapdin.m M=mapdKW
3 mapdin.u U=DVecHKW
4 mapdin.s S=LSubSpU
5 mapdin.k φKHLWH
6 mapdin.x φXS
7 mapdin.y φYS
8 inss1 XYX
9 1 3 5 dvhlmod φULMod
10 4 lssincl ULModXSYSXYS
11 9 6 7 10 syl3anc φXYS
12 1 3 4 2 5 11 6 mapdord φMXYMXXYX
13 8 12 mpbiri φMXYMX
14 inss2 XYY
15 1 3 4 2 5 11 7 mapdord φMXYMYXYY
16 14 15 mpbiri φMXYMY
17 13 16 ssind φMXYMXMY
18 eqid LCDualKW=LCDualKW
19 eqid LSubSpLCDualKW=LSubSpLCDualKW
20 1 2 3 4 18 19 5 6 mapdcl2 φMXLSubSpLCDualKW
21 1 2 18 19 5 mapdrn2 φranM=LSubSpLCDualKW
22 20 21 eleqtrrd φMXranM
23 1 2 3 4 18 19 5 7 mapdcl2 φMYLSubSpLCDualKW
24 23 21 eleqtrrd φMYranM
25 1 2 3 18 5 22 24 mapdincl φMXMYranM
26 1 2 5 25 mapdcnvid2 φMM-1MXMY=MXMY
27 inss1 MXMYMX
28 26 27 eqsstrdi φMM-1MXMYMX
29 1 18 5 lcdlmod φLCDualKWLMod
30 19 lssincl LCDualKWLModMXLSubSpLCDualKWMYLSubSpLCDualKWMXMYLSubSpLCDualKW
31 29 20 23 30 syl3anc φMXMYLSubSpLCDualKW
32 31 21 eleqtrrd φMXMYranM
33 1 2 3 4 5 32 mapdcnvcl φM-1MXMYS
34 1 3 4 2 5 33 6 mapdord φMM-1MXMYMXM-1MXMYX
35 28 34 mpbid φM-1MXMYX
36 1 2 5 32 mapdcnvid2 φMM-1MXMY=MXMY
37 inss2 MXMYMY
38 36 37 eqsstrdi φMM-1MXMYMY
39 1 3 4 2 5 33 7 mapdord φMM-1MXMYMYM-1MXMYY
40 38 39 mpbid φM-1MXMYY
41 35 40 ssind φM-1MXMYXY
42 1 3 4 2 5 33 11 mapdord φMM-1MXMYMXYM-1MXMYXY
43 41 42 mpbird φMM-1MXMYMXY
44 26 43 eqsstrrd φMXMYMXY
45 17 44 eqssd φMXY=MXMY