Metamath Proof Explorer


Theorem mapdpglem14

Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
mapdpglem3.a A=ScalarU
mapdpglem3.b B=BaseA
mapdpglem3.t ·˙=C
mapdpglem3.r R=-C
mapdpglem3.g φGF
mapdpglem3.e φMNX=JG
mapdpglem4.q Q=0U
mapdpglem.ne φNXNY
mapdpglem4.jt φMNX-˙Y=Jt
mapdpglem4.z 0˙=0A
mapdpglem4.g4 φgB
mapdpglem4.z4 φzMNY
mapdpglem4.t4 φt=g·˙GRz
mapdpglem4.xn φXQ
mapdpglem12.yn φYQ
mapdpglem12.g0 φz=0C
Assertion mapdpglem14 φYNX

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 mapdpglem3.a A=ScalarU
16 mapdpglem3.b B=BaseA
17 mapdpglem3.t ·˙=C
18 mapdpglem3.r R=-C
19 mapdpglem3.g φGF
20 mapdpglem3.e φMNX=JG
21 mapdpglem4.q Q=0U
22 mapdpglem.ne φNXNY
23 mapdpglem4.jt φMNX-˙Y=Jt
24 mapdpglem4.z 0˙=0A
25 mapdpglem4.g4 φgB
26 mapdpglem4.z4 φzMNY
27 mapdpglem4.t4 φt=g·˙GRz
28 mapdpglem4.xn φXQ
29 mapdpglem12.yn φYQ
30 mapdpglem12.g0 φz=0C
31 1 3 8 dvhlmod φULMod
32 eqid +U=+U
33 4 32 5 lmodvnpcan ULModYVXVY-˙X+UX=Y
34 31 10 9 33 syl3anc φY-˙X+UX=Y
35 eqid LSubSpU=LSubSpU
36 4 35 6 lspsncl ULModXVNXLSubSpU
37 31 9 36 syl2anc φNXLSubSpU
38 lmodgrp ULModUGrp
39 31 38 syl φUGrp
40 eqid invgU=invgU
41 4 5 40 grpinvsub UGrpXVYVinvgUX-˙Y=Y-˙X
42 39 9 10 41 syl3anc φinvgUX-˙Y=Y-˙X
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem13 φNX-˙YNX
44 4 5 lmodvsubcl ULModXVYVX-˙YV
45 31 9 10 44 syl3anc φX-˙YV
46 4 6 lspsnid ULModX-˙YVX-˙YNX-˙Y
47 31 45 46 syl2anc φX-˙YNX-˙Y
48 43 47 sseldd φX-˙YNX
49 35 40 lssvnegcl ULModNXLSubSpUX-˙YNXinvgUX-˙YNX
50 31 37 48 49 syl3anc φinvgUX-˙YNX
51 42 50 eqeltrrd φY-˙XNX
52 4 6 lspsnid ULModXVXNX
53 31 9 52 syl2anc φXNX
54 32 35 lssvacl ULModNXLSubSpUY-˙XNXXNXY-˙X+UXNX
55 31 37 51 53 54 syl22anc φY-˙X+UXNX
56 34 55 eqeltrrd φYNX